

Detailed Site Investigation – Melrose Park Public School

110 Wharf Rd, Melrose Park NSW

Prepared for: School Infrastructure NSW

A101023.0436| A101023.0046.DSI.v2f | Date: 07/04/2025

Document Information

Report Title:	Detailed Site Investigation – Melrose Park Public School
Prepared for:	School Infrastructure NSW
Project Address:	110 Wharf Road, Melrose Park, NSW
File Reference:	A101023.0436
Report Reference:	A101023.0436_SINSW DSI Melrose Park_v2f
Date:	07/04/2025

Document Control

Version	Date	Author	Revision description	Reviewer
V1d	22/12/2023	Andrew Carmichael	Draft for client review	Junaid Riaz
V1f	22/02/2024	Andrew Carmichael	Final for issue	Junaid Riaz
V2f	07/04/2025	Karin Azzam	Minor updates as per client request	Junaid Riaz

For and on behalf of

ADE Consulting Group Pty Ltd

Prepared and issued by:

Reviewed by:

Karin Azzam Environmental Consultant Junaid Riaz, CEnvP 1317 Associate Environmental Consultant

T. 1300 796 922 | E. info@ade.group

This report is copyright. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying without permission in writing from ADE Consulting Group Pty Ltd.

Contents

1	Intro	troduction9		
	1.1	Background	9	
	1.2	Objectives	9	
	1.3	Scope of Work	9	
	1.4	Activity Description	. 10	
	1.5	Legislative Requirements	. 11	
	1.6	Limitations Specific to this Assessment:	. 11	
2	Site	Identification	.12	
	2.1	Site Location and Description	. 12	
	2.1.1	Summary of Site Details	. 12	
	2.2	Site Observations	. 13	
3	Phys	sical Setting	14	
4	Sum	mary of Previous Report	15	
	4.1	Site History	. 15	
	4.2	Assessment of on-site contamination	. 15	
5	Prel	iminary Conceptual Site Model	16	
	5.1	Potential Contamination Sources	. 16	
	5.2	Contaminants of Potential Concern (CoPCs)	. 16	
	5.3	Potential Contaminant Pathways	. 16	
	5.4	Sensitive Receptors	. 17	
	5.5	Qualitative Risk Assessment:	. 17	
6	Site	Investigation Criteria	18	
	6.1	Health Investigation Levels (HILs)	. 18	
	6.2	Health Screening Levels (HSLs)	. 19	
	6.3	Health-based screening levels - asbestos	. 20	
	6.4	Management Limits	. 20	
	6.5	Ecological Investigation Levels (EILs)	. 20	
	6.6	Ecological Screening Levels (ESLs)	21	
	6.7	PFAS	. 22	
	6.8	Aesthetics	. 23	
	6.9	Vapour Screening Criteria	. 23	
7	Site	Investigation Design and Procedure	24	
	7.1	Pre-Work Procedure	. 24	
	7.2	Sampling Design	. 24	
	7.3	Intrusive Works (Soil Sampling)	. 24	
	7.3.1	Soil Vapour Probes	. 27	
	7.4	Documentation	. 27	

1:	3 Refe	References		
12	2 Limitations and Disclaimer			
	11.6 Limitations Specific to this Assessment:			
11.5 Duty to Report under Section 60 CLM Act 1997		Duty to Report under Section 60 CLM Act 1997	35	
11.4 Site Suitability		Site Suitability	35	
11.3 Recommendations		34		
11.2 Conclusion		Conclusion	34	
	11.1	2 Summary of Site Contamination Investigation	. 34	
	11.1	1 Summary of Site History	. 34	
	11.1	Summary of Findings	34	
1:	L Con	clusions and Recommendations	34	
	10.4	Potential Contaminant Pathways	32	
	10.3	Sensitive Receptors	32	
	10.2	Potential Contaminants of Concern	32	
	10.1	Potential Contamination Sources	32	
1() Rev	sed Conceptual Site Model	32	
9	Qua	lity assurance and quality control (QAQC)	31	
	8.5	Soil vapour screening results	30	
	8.4	Statistical treatment of results	29	
	8.3.7	PFAS	. 29	
	8.3.6	Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	. 29	
	8.3.5	Polyaromatic hydrocarbons (PAHs)	. 29	
	8.3.4	Asbestos	. 29	
	8.3.3			
	8.3.2			
	8.3.1	-		
	8.3	Analytical results		
	8.2	Potential Contamination (Visual and Olfactory)		
0	8.1			
8	-	sults		
	7.5	Laboratory Details		
	7.5	Laboratory Analysis		

Tables

Table 2 Details and Information	
Table 3. Surrounding Land Uses	
Table 4 Physical Setting	
Detailed Site Investigation – Melrose Park Public School	Page 4

Table 5 Health investigations levels for soil contaminants	18
Table 6 PAH TEQ Calculation Basis	19
Table 7. Health screening levels for soil contaminants	19
Table 8. Health screening levels for asbestos contamination in soil	20
Table 9. Management limits for TRH fraction in soil	20
Table 10. Site-specific EIL criteria	21
Table 11. Ecological screening levels for soil contaminants	21
Table 12. Summary of the adopted assessment criteria for PFAS in soil	22
Table 13: Sampling and analytical program - soil	26
Table 14 Soil Profile	28
Table 15 Preliminary Source-Pathway-Receptor Analysis	33
Table 16 Summary of the Study Boundaries	51
Table 17 Summary of the Decision Rules	51
Table 18 Summary of Acceptable Limits on Decision Errors.	52
Table 19 Summary of Procedures to be Undertaken to Optimize the Design for Obtaining Data	53
Table 20 Summary of Soil Sample QA/QC Analysis.	54

Appendices

Appendix A - Figures
Appendix B – Test pit logs, Borehole logs, SV Installation logs
Appendix C – Photographs
Appendix D – Equipment calibration certificate (PID and GFM)
Appendix E – Results & UCL Summary Table
Appendix F – Analytical Reports and Chain of Custody
Appendix G – Data Quality Objectives
Appendix H - Data Quality Assessment

Appendix I – QAQC Table

Executive Summary

ADE was engaged by NSW Department of Education (DoE), to undertake a Detailed Site Investigation (DSI) to investigate the nature and extent of potential contamination (if any) of the proposed development footprint within the Melrose Park Public School, located at 110 Wharf Road, Melrose Park, New South Wales (NSW) hereafter referred to as 'the site'. The subject area comprises the footprint of a proposed new development. The new development comprises replacement and addition of school infrastructure on site to moder. The site is legally defined as Lot 3, DP 535298 and comprises a combined area of approximately 1.5 hectares (Ha).

The investigation seeks to assess soil conditions in the proposed development area for potential contamination exceeding site assessment criteria, updating the conceptual site model for due diligence. Historical data reveals the site has been used as a school since 1942, with major construction in the 1940s-1960s, minimal changes since the 1960s, and continuous ownership by the Department of Education. Surrounding areas underwent industrial development, and nearby contaminated sites, like a former gasworks and landfill, were identified within a 1 km radius, including the former Reckitt Benckiser site 50m north of the investigated area.

As part of the Detailed Site Investigation (DSI), the assessment encompassed a site walkover, an intrusive investigation with soil sampling. The intrusive investigation involved:

- The excavation of:
 - seventeen (17) test pits across the footprint of the proposed development (ID: TP1 to TP17).
 - ten (10) boreholes were advanced through a drill rig (solid flight augers) as part of a parallel geotechnical investigation across the footprint of the proposed development (ID BH01 to BH10).
 - environmental samples were collected from the test pits and boreholes and were also collected from geotechnical boreholes at 0.5m below ground level (BGL)
- The installation and sampling of 2 soil vapour probes in boreholes BH05 and BH07 for screening of volatile organic compounds (VOCs).

•

All soil samples collected during the DSI were subsequently submitted for laboratory analysis. No exceedances to the adopted site assessment criteria (SAC) were reported in the soil samples collected during this investigation. Following the desktop study and the intrusive assessment, ADE considers that there is a low risk of contamination in soil that has occurred due to past and current activities undertaken at the site. ADE considers that further environmental assessment at the site is not warranted due to the following:

- The soil sampling undertaken during this investigation reported concentrations of contaminants of potential concern (CoPCs) below the adopted site acceptance criteria for the proposed land use;
- The majority of the site surface was free from any visual signs of contamination (staining, olfactory). Similarly, no staining or odours were detected in the test pits excavated.
- No evidence of infrastructure associated contaminating activities such as underground petroleum infrastructure, was identified at the site;

- Screening for VOCs indicated absence of VOCs warranting further consideration within on-site soils, including VOCs from the soil vapour wells installed.
- It is considered that the site can be made suitable for the proposed development to the following recommendation:
- Should asbestos or other environmental contamination (e.g. staining, odours, sheens) be identified during future excavation at the site, an Unexpected Finds protocol and the proper safety procedures should be implemented.
- Should future excavations/construction activities interact with the soil and/or groundwater at a deeper level than currently proposed, further assessment may be required for deeper lithologies and groundwater. This DSI was undertaken in conjunction with a geotechnical investigation with results reported in the following report:

ADE (2023a) Geotechnical Investigation Report, Proposed Infrastructure Development – Melrose Park Public School, 110 Wharf Road, Ermington, NSW 2114. Date 17 November 2023

Based on the available information and assessment, ADE considers the site is suitable for the continued use as a primary school and for the proposed development of a multi- storey amenities and classroom building.

Abbreviations

Table 1 Abbreviations

Abbreviation	Definition	
ACM	Asbestos Containing Material	
ADE	ADE Consulting Group Pty Ltd	
AHD	Australian Height Datum	
AS	Australian Standard	
BGL	Below Ground Level	
BR	Blind Replicate	
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes	
COC	Chain of Custody	
CoPCs	Contaminants of Potential Concern	
CSM	Conceptual Site Model	
DEC	Department of Environment and Conservation	
DP	Deposited Plan	
BYDA	Before You Dig Australia	
DQO	Data Quality Objectives	
DSI	Detailed Site Investigation	
EILs	Ecological Investigation Levels	
EPA	Environment Protection Authority	
ESLs	Ecological Screening Levels	
HILs	Health Investigation Levels	
HSLs	Health Screening Levels	
LEP	Local Environmental Plan	
LGA	Local Government Area	
m BGL	meters Below Ground Level	
m BTOC	meters Below Top Casing	
NATA	National Association of Testing Authorities	
NEPC	National Environmental Protection Council	
NEPM	National Environmental Protection Measure	
NSW	New South Wales	
NSW EPA	New South Wales Environment Protection Authority	
OPPs	Organophosphorus Pesticides	
OCPs	Organochlorine Pesticides	
PAHs	Polycyclic Aromatic Hydrocarbons	
PFAS	Per-fluoroalkyl substances	
PQL	Practical Quantification Limit	
PSI	Preliminary Site Investigation	
QA/QC	Quality Assurance/Quality Control	
RL	Relative Level	
RPD	Relative Percent Difference	
SAC	Site Assessment Criteria	

1 Introduction

1.1 Background

ADE was engaged by the NSW Department of Education (DoE) to undertake a Detailed Site Investigation (DSI) to investigate the nature and extent of potential contamination (if any) within a portion subject to proposed redevelopment (the activity) within Melrose Park Public School, located at 110 Wharf Road, Melrose Park, New South Wales (NSW) (the "site").

ADE understands that Melrose Park Public School will be redeveloped to provide new classrooms and core facilities to meet anticipated enrolment growth in the area.

The area that pertains to this DSI (the site) is approximately 1.5 hectares (ha), is rectangular in shape and encompasses the central and eastern portion of Melrose Park Public school. The site extends approximately 117 metres (m) to the west from the eastern school boundary and approximately 130 m from the northern to the southern school boundary. The site is situated within the Local Government Area (LGA) of the Parramatta City Council, zoned as SP2 Educational Establishment and forms part of the legally defined Lot 3 in Deposited Plan (DP) 535298. Please refer to Figure 1 in *Appendix A - Figures* for site locality and site boundary.

This DSI was undertaken in conjunction with an intrusive geotechnical investigation with results reported in the following report:

ADE (2023a) *Geotechnical Investigation Report,*– *Melrose Park Public School, 110 Wharf Road, Ermington,* ref: A201023.0436.00_B_vd, dated: 17 November 2023

ADE understands that the DSI will serve to assess the suitability of the proposed development by evaluating its environmental condition, specifically in terms of contamination. This assessment will aim to determine whether contamination is present or absent, thereby demonstrating due diligence as to whether the land is suitable. This investigation included the following components:

- Review of the site's history, including a review of previous environmental investigations (ADE, 2023)
- Desktop study of the site's condition and its surrounding environment
- Site walkover and visual inspection
- Limited soil sampling on-site; and
- Preparation of this DSI report outlining the findings of the investigation.

An intrusive investigation was undertaken by experienced ADE environmental consultants on 10 August 2023. This report summarises the findings of the site walkover, analytical results of soil sampling and discusses the outcomes of the overall investigation.

1.2 Objectives

The objectives of the investigation were to:

• Assess the site suitability for proposed development and comment whether any further investigations are required.

1.3 Scope of Work

The scope of work included the following:

- A review and summary of results from the previous preliminary site investigation undertaken (ADE, 2023b).
- An intrusive investigation primarily undertaken using a combination of mechanical excavation to advance test pits and a track mounted Geoprobe drilling rig to advance boreholes. Manual drilling using a hand

auger was used in one location due to inaccessibility of mechanical plants. The soil investigation program including the collection and analysis of samples from a total of twenty-eight (27) locations:

- Sixteen (16) test pits were advanced to depths ranging from 0.45 to 0 .95 meters below ground level (m BGL) via excavator (ID: TP1 – TP7, TP9-TP17).
- One (1) borehole was manually advanced to 0.25 mBGL using a hand auger (ID: TP8).
- Nine (9) boreholes were advanced to depths ranging from 1.3 to 4.42 mBGL for a combination of soil contamination assessment and geotechnical purposes.
- One (1) borehole advanced to 12.33 mBGL for a combination of soil contamination assessment and geotechnical purposes.
- Semi-quantitative field screening for volatile organic compounds (VOCs) in soil, undertaken at each sampling location using a calibrated photo-ionisation detector (PID).
- Laboratory analysis of selected soil samples for identified contaminants of potential concern (CoPCs) by laboratories accredited by the National Association of Testing Authorities (NATA) for the analytical methods used.
- A soil vapour screening program involving the installation of two (2) soil vapour wells and the field measurement from those wells at BH05 and BH07.
- Collation and interpretation of data, including a quality assurance / quality control (QA/QC) data validation process.
- Preparation of this report detailing the combined findings of the DSI works.

1.4 Activity Description

The activity is for upgrades to Melrose Park Public School within a one to three-storey built form, including

- Demolition of existing school buildings;
- Site preparation works including tree removal;
- Construction of the following buildings:
 - **Block A**: One (1) storey building comprising;
 - universal pre-school (UPS)
 - outdoor play area for the UPS; and
 - detached storeroom;
 - **Block B1**: Two (2) storey building comprising:
 - staff and administration areas;
 - library;
 - 4 special programs rooms;
 - Pedestrian bridge to Block B2;
 - **Block B2:** Three (3) storey building comprising:
 - 23 classrooms;
 - amenities/services cores; and
 - pedestrian bridge to Block B3;
 - **Block B3:** Three (3) storey building comprising:
 - 12 classrooms; and
 - amenities/services cores;

- Block C: One (1) storey building comprising:
 - hall;
 - amenities;
 - canteen;
 - OSHC; and
 - COLA;
- Construction of two (2) car parking areas; and
- Landscaping works.

1.5 Legislative Requirements

The legislative framework for the report is based on guidelines that have been approved by the NSW EPA under the following Acts and Regulations:

- State Environmental Planning Policy (Planning Systems Resilience 2021)
- Contaminated Land Management Act 1997 (NSW) (CLM Act)
- Protection of the Environment Operations Act 1997 (NSW) (POEO Act)
- Environmentally Hazardous Chemicals Act 1985 (NSW), and National Environment Protection Council Act 1995

The relevant guidelines issued under the provisions of the aforementioned Acts / Regulations include:

- Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme, 3rd edition (NSW EPA, 2017);
- Sampling Design guidelines for contaminated land (NSW EPA 2022)
- Guidelines for Consultants Reporting on Contaminated Land, NSW EPA 2020
- National Environmental Protection Measure (Assessment of Site Contamination) 1999, and 2013 Amendment (NEPM, 2013) and
- Environmental Planning and Assessment Act 1979 (EP&A Act 1979).

The following local government plan have also been taken into consideration for preparation of this DSI:

• The Parramatta City Council Local Environmental Plan (2023) (NSW).

1.6 Limitations Specific to this Assessment:

The assessment included limited sampling and had no coverage of groundwater. The number of samples collected from the site is meant for screening purposes only and may not represent the whole site's conditions.

2 Site Identification

2.1 Site Location and Description

Melrose Park Public School is located at 100 Wharf Road, Melrose Park and covers an approximate area of 25,558m² or 2.5 ha). For the purposes of this report the site refers to an area that covers the footprint of the proposed development area for the construction of a new multistorey classroom and amenities building (~1500 m²) (Refer to Figure 1, *Appendix A - Figures*).

This area (hereafter known as 'the site') is currently occupied by classrooms and an afterschool care of OSHC building in the southern side, the central portion is occupied by an asphalt play court with shade cloth coverings and the northern portion of the side is occupied by an administrative building, hall, and library in the northeast corner. Finally, the northwest portion of the site is currently occupied by a student amenities block, vegetable garden and vegetation. (Refer to Figure 1, *Appendix A - Figures*).

2.1.1 Summary of Site Details

Site Details Site address: 110 Wharf Road, Melrose Park 2114, NSW. **Title identification:** Lot 3 DP535298 Approximately 15,000 m² or 1.5 ha. Site area: **Council Area:** City of Parramatta Land Use Zoning: SP2 Educational Establishment **Current Site Owner:** Department of Education, NSW Educational purposes/ school **Current Land Use:** Educational purposes/ school **Future Uses:** Local Environmental Parramatta Local Environmental Plan 2023 Plan

Table 2 Details and Information

2.2 Site Observations

Melrose Park Public School encompasses a 2.5-hectare rectangular lot, featuring administrative buildings, a hall, library, and classrooms in the northeast and southeast sections. The vast majority of the grounds are covered in grass (90%), with the remaining 10% allocated to asphalt play areas and concrete building bases. At the time of inspection, the site area presented the same condition as observed in the PSI (ADE, 2023), revealing no signs of asbestos or building rubble beneath the structures, or any visual or olfactory indicators of contamination.

Orientation with Site	Description of Use	Sensitive Receptors
North	 Industrial estates, workshops, and small-scale manufacturing Hope Street immediately to the north. An industrial area Formerly occupied by Reckitt Benckiser (RB) for chemical manufacturing and storage. A former Pfizer Industrial facility further north 	 Fauna, flora Off-site ecological receptors Residents/workers Students and teaching staff
East	Low density residential buildings lie along wharf road, public recreation areas are also to the east including Jennifer Park Playground, Sindel Reserve and the commercial Rudge Parramatta golf rang which includes Archers Creek.	
South	golf rang which includes Archers Creek. Immediately south of the site lies a timber supplies store and a pharmaceutical company, further south lies public recreation areas on either side including Archer Park and Ermington Bay nature trail. Further south of this, lies the Parramatta River.	
West	 General industrial properties Includes warehouses, McNeall plastics manufacturing, Ryde City Ford service centre, and a Hyundai service centre 	

Table 3. Surrounding Land Uses

3 Physical Setting

Table 4 Physical Setting

A desktop study was conducted by ADE as part of the PSI (ADE, 2023b) to review site topography, geology, hydrogeology, and other relevant information. The information obtained is provided in the PSI and applies to the whole of Melrose Public School more broadly. At the time of sampling the site presented the same condition as the PSI. A summary specific to the site is produced here, for a more detailed description of Melrose Public School please refer to the PSI.

Attribute	Description	
Topography	The site is located on the western side of Wharf Road. The site surface was generally flat with a slight dip in elevation occurring towards the west side of the site. Relative levels (RL) of the site were 14 meters Australian Height Datum (AHD) in the north of the site and 10m AHD on the western border.	
Site Drainage	The site surface was mostly covered in grass with many buildings having open or raised undersides. Stormwater drains were observed from buildings flowing directly into the soil. Rainwater is likely to collect in gutters and downpipes, followed by pooling on the ground surface, then vertical percolation through the topsoil and underlying residual soil materials.	
	Rainwater transported through overland flow is likely to be transported along local roads and stormwater pipes towards the southwest part of the site, ultimately discharging into Paramatta River.	
Nearest Surface Water Features	Parramatta River flows in an easterly direction approximately. Archer creek also lies 400m to the west which discharges into the Parramatta River.	
Hydrogeology & Groundwater	The underlying soil in the area generally consists of porous, extensive aquifers of low to moderate productivity.	
	A search for registered Groundwater wells within 2km revealed a total of 32 Groundwater Bores, with 5 of those occurring within 5km of the site. None were identified on site.	
	Groundwater is generally anticipated to flow in a south to south-westerly direction, towar Parramatta River, consistent with local topography.	
Local Geology & Soil	The Sydney 1:100,000 Soil Landscape Map indicates that the site overlies soil of the Residual Lucas Heights (RElh) landscape comprising of gently undulating crests and ridges on plateau surfaces of the Mittagong Formation. Local relief 30m, slopes <10%. The Mittagong formation comprises of interbedded shale, laminate and fine to medium grained quartz sandstone.	
	Soils typically consist of hard setting yellow podzolic soils and yellow sloths at moderately deep depths (50-150cm). (Chapman and Murphy, 2002).	
	The Sydney 1:100,000 Geological Series Map indicates the site is underlain by the Wianamatta group (Rh) which consists of Medium to coarse-grained quartz sandstone, very minor shale and laminate lenses.	
Acid Sulfate Soil Risk	ADE undertook a review of the department of Planning, Industry and Environment's <i>Environmental Planning Instrument – Acid Sulfate Soils</i> to establish the potential for Acid Sulfate Soil (ASS) at the Site. The site was not identified as an area in risk of ASS.	
	The ASRIS Atlas of Australian Acid sulphate soils indicates that the site lies within a Class 5 ASS Risk area. Class 5 areas are located within 500m of adjacent Class 1,2,3 or 4 land that is below 5 m AHD and by which the water table is likely to be lowered below 1m AHD on adjacent Class 1,2,3,4 land. Based on the above review analysis for acid sulfate soils is not considered necessary.	

4 Summary of Previous Report

Based on a Preliminary Site Investigation (PSI), the site showed low contamination risk. Shallow soil and soil vapor investigations were advised due to nearby industrial complexes north and west of the site, which have been present since the 1960s. The school site itself has no historical contamination sources, and potential risks identified mainly stem from offsite factors.

4.1 Site History

The historical context of the site has been assembled from a variety of sources, including authorized information providers such as the Land and Property Information (LPI), NSW Government, and Parramatta City Council. Melrose Public School, originally known as Walumetta, founded in 1945, initially, featured a small timber building with two classrooms, amidst orchards and gardens. By the 1950s, it was renamed Melrose Park Public School. In 1954, tree planting and a sports ground were introduced, and the school's library opened in 1960. Industrial expansion in neighbouring properties, including notable companies like Pfizer, occurred from the 1960s onwards.

Over the years, the school underwent further changes, such as the addition of demountable classrooms in 2010 and an information and communication technology (ICT) centre in 2008. Further developments between 2010 and 2013 included a school hall, bathroom block, kitchen garden, and additional demountable buildings. Subsequent years brought minor additions like metal shade structures and storage containers. In 2020, the most recent development introduced a new Out-of-School Hours Care (OSHC) building along the south boundary.

4.2 Assessment of on-site contamination

Based on the results of the desktop study and site walkover, the report indicated that the likelihood of contamination on-site is low-moderate. As part of the desktop study no historically contaminating activities were identified as occurring on site, nor were any signs of contamination identified during the site walkover.

Some select areas to the north of the site have appeared on the EPA list of contaminated sites. These sites included the Reckitt Benckiser site 50m north above hope street and Pfizer Australia, located 380m north of the site. Both sites have management classifications listed as "regulation under CLM not required". During the site walkover and desktop study some potential contamination migration pathways were identified these included the migration of asbestos from nearby asbestos roofing along the northern boundary, the potential of impacted groundwater to generate vapours due to nearby industrial activities. Overall, the site presented in good condition with no visual or olfactory indicators of contamination identified.

5 Preliminary Conceptual Site Model

Conceptual site models (CSMs) are discussed in NEPM Schedule B2, section 4 and are constructed to identify potential contamination concerns and inform evaluate any risk of proceeding with the proposed development. CSMs are made up of known and potential sources of contamination, potentially affected media, human and ecological receptors, and potential and complete exposure pathways. Connecting sources, media, receptors, and pathways assists in developing a risk assessment for site contamination investigations.

5.1 Potential Contamination Sources

No direct contamination sources were identified on site, however, following potential offsite contamination sources were identified during the desktop study review of the site and observations made during the site walkover:

- Due to the nature of residential construction from the 1960s to 2000s and the prevalent use of asbestos and lead materials during this time period, potential ACM and or lead containing products may have or can impact the surficial and / or upper soil profile.
- Potential for heavy metals and ACM contamination through underground services and conduits,
- Potential Heavy Metals, OCPs and OPPs contamination of the surficial and / or upper soil profile as a result of small-scale residential use of pesticides and herbicides.
- Potential for contamination via imported fill materials used in the construction of the classrooms in the past. Due to the uncontrolled nature of this material, there is the potential for a range of contaminants being present including, but not limited to Heavy Metals, PAHs, TRH, BTEX, PCBs, OCPs and OPPs; and
- Potential oil and grease contamination due to significant run-off or flooding from adjacent roads.
- Storage vehicles on as well as agricultural machinery including grass mowers used on the site could cause contamination of heavy metals, OCPs, OPPs, PCBs, PAHs, TRHs and BTEX.
- Use of machinery/ refuelling on site, workshop welding, potentially resulting in the presence of petroleum hydrocarbons and heavy metals in the form of varnish, paint, thinners, and adhesives.
- Potential asbestos containing cement roof of warehouse immediately to the north of the site. Over time, asbestos roofs can deteriorate and release small amounts of asbestos fibres.
- Potential fuel or lube oil spillage from used car dealership immediately north of the site.
- Historical chemical, pharmaceutical and veterinary production and waste generation at the former Reckitt Benckiser and Pfizer facilities to the north and upgradient of the site.

5.2 Contaminants of Potential Concern (CoPCs)

- Heavy metals;
- Total recoverable hydrocarbons (TRHs);
- Benzene, toluene, ethylbenzene and xylenes (BTEX);
- Polycyclic aromatic hydrocarbons (PAHs);
- Polychlorinated biphenyls (PCBs);
- Organochlorine and organophosphorus pesticides (OCPs/OPPs);
- Volatile Organic Compounds (VOCs), including chlorinated hydrocarbons;
- Inorganics including ammonia, nitrates, sulphates, sulfides.
- Phenols; and
- Asbestos

5.3 Potential Contaminant Pathways

The CoPCs were primarily selected for due diligence and the number of sensitive receptors on and off site. The CoPCs chosen to represent a wide range of potential environmental contamination and, ensuring the most

vulnerable individuals are adequately protected from potential health risks. Possible transport mechanics within the Site may include:

- Atmospheric dispersion of contaminated material including dispersion and runoff
- Volatilisation of contamination from ground surface;
- Transport of contaminants by human and/or mechanical disturbance (e.g., earthworks); and
- Leached contaminants being transported from offsite sources through groundwater.

Possible exposure routes within the site may include:

- Potential dermal, inhalation and oral exposure to impacted soils present at shallow depths and/or accessible by future excavations within the site;
- Inhalation of airborne contamination media (e.g., vapour, dust)

5.4 Sensitive Receptors

Potential human receptors at the Site include:

- Residents of neighbouring properties and surrounding site users;
- Construction / landscaping workers involved with any future works onsite;
- Current and future users of the site including students and staff; and
- Current and future maintenance workers undertaking subsurface maintenance works.

Potential ecological receptors at the site include:

- Flora and fauna that inhabit or travel through the site;
- Groundwater environment beneath the site is potentially being impacted as a result of the vertical migration of contaminants;
- Conservation areas adjacent to the site.

5.5 Qualitative Risk Assessment:

For the purposes of this DSI, assessed through the PSI (ADE, 2023), the following qualitative risk assessment has been applied:

- Low Risk the activities and related Contaminants of Potential Concern (CoPC) are likely to pose no
 or a low potential human health/environmental impact. Any impact is likely localised to a specific
 area of the Site;
- Moderate Risk the activities and related CoPC are likely to pose potential for moderate human health/environmental impact. Any impact is likely localised to a specific area of the Site; and
- High Risk the activities and related CoPC could pose a significant environmental impact. There is potential for impacts of the immediate local area of the Site or off-Site migration impacting surrounding human and/or environmental receptors.

Based on the above potential contamination information, the current risk assessment of the site is considered to be low to moderate risk for the above-mentioned CoPC's if they are present on site.

6 Site Investigation Criteria

Given the on-going use of the site as a primary school, soil analytical results were tabulated and compared to the most conservative investigation and screening level for the residential land use scenario with garden accessible soil (HIL A) of Schedule B(1) Guideline on the investigation levels for soil and groundwater from the ASC NEPM (2013).

Typically for contaminant concentration to be considered acceptable for the respective land use criteria, the data set must conform to the following requirements:

- The 95% upper confidence limit (UCL) of the arithmetic mean of analytical results is below the site criteria.
- The arithmetic (or geometric in cases where the data is log-normally distributed) mean is below the site criteria.
- The standard deviation is less than 50% of the site criteria.
- No single sample analytical result is greater than 250% of the site criteria.

6.1 Health Investigation Levels (HILs)

The health investigation levels (HILs) are applicable for assessing human-health risk via all relevant pathways of exposure. Health-based investigation levels (HILs) will be applied to the site for ongoing primary school land use, with applicable criteria outlined in **Table 5**.

The setting is based on the protection of human receptors in residential land use scenarios with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry), which also includes childcare centres, preschools and primary schools (HIL A).

Analyte	HIL A (mg/kg)
Arsenic (total)	100
Cadmium	20
Chromium (VI)	100
Copper	6,000
Lead	300
Mercury (inorganic)	40
Nickel	400
Zinc	7,400
Carcinogenic PAHs (as BaP TEQ ¹)	3
Total PAHs	300
Total PCBs	1
DDT+DDE+DDD	240
Aldrin and Dieldrin	6
Chlordane	50

Table 5 Health investigations levels for soil contaminants

Analyte	HIL A (mg/kg)
Endosulfan	270
Endrin	10
Heptachlor	6
Hexachlorobenzene	10
Methoxychlor	300
Chlorpyrifos	160
Cyanide (free)	250
Phenols	3,000

 Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products.

Table 6 PAH TEQ Calculation Basis

PAH species	TEF	PAH species	TEF
Benzo(a)anthracene	0.1	Benzo(g,h,i)perylene	0.01
Benzo(a)pyrene	1	Chrysene	0.01
Benzo(b+j)fluoranthene	0.1	Dibenz(a,h)anthracene	1
Benzo(k)fluoranthene	0.1	Indeno(1,2,3-c,d)pyrene	0.1

6.2 Health Screening Levels (HSLs)

HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via inhalation and direct contact pathways. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures. The soil texture for applications of HSLs at the site is "clay". ASC NEPM (2013) presents HSL A & HSL B (Low – high density residential) Tier 1 screening criteria for BTEX, naphthalene, TRH fractions C6-C10 and C10-C16 for vapour intrusion. Values for clay with depth criterion to < 1 metres was used. The HSL A & HSL B criteria are summarised in **Table 7**.

Table 7. Health screening levels for soil contaminants

Analyte	HSL A & B (mg/kg)
Analyte	Low – high density residential (Clay)
Benzene	0.7
Toluene	480
Ethylbenzene	NL
Xylene	110
Naphthalene	5
TRH: C6 – C10(F1)3	50
TRH: C10 – C16 (F2)	280

6.3 Health-based screening levels - asbestos

Health screening levels for asbestos in soil are adopted form WA DoH guidelines as listed in **Table 8**.

Analyte	HIL A (mg/kg)
Bonded ACM ¹	0.01% w/w
FA and AF (friable asbestos) ²	0.001% w/w
All forms of asbestos	No visible asbestos for surface soil

Notes to Health screening levels for asbestos in soil are adopted form WA DoH guidelines as listed in Table 8.

Table 8

- 1. ACM Bonded asbestos containing material
- 2. FA Fibrous asbestos; AF Asbestos fines

6.4 Management Limits

In accordance with section 2.9 of schedule B1 of the ASC NEPM, consideration of Management Limits for petroleum hydrocarbons will be undertaken to assess whether the reported soil conditions have the potential to pose a risk to buried infrastructure, or the formation of non-aqueous phase liquid (NAPL). Values for coarse grained soils from Table 1 B (7) of Schedule B1 will be adopted as a conservative approach.

A summary of the adopted TRH management limits for this site is provided in Table 9.

Tuble 5: Multugement initi	
Chemical	Management Limits for TRH (mg/kg dry soil)
	Residential, parklands and public open space (fine texture)
F1 C6-C10	800
F2 C10-C16	1,000
F3 >C16-C34	3,500
F4 >C34-C40	10,000

Table 9. Management limits for TRH fraction in soil

6.5 Ecological Investigation Levels (EILs)

The ASC NEPM (2013) presents the methodology for deriving terrestrial EILs using both fresh and aged (i.e. >2 years old) contamination for soil with "urban residential/ public open space" land use scenario.

The methodology has been developed to protect soil processes, soil biota (flora and fauna) and terrestrial invertebrates and vertebrates and the resultant ELLs are applied to the top 2m of the soil profile, where the majority of process occur and organisms reside.

As there is no proposed change in the land-use for the site, the adopted scenario is for Open Space/ Recreation. Site specific EILs have been derived in this DSI and comprise the sum of ambient background concentrations (ABCs) and added contaminant limits (ACLs).

The ACL concentrations ascertained for representative locations are usually based on the site-specific results for either pH alone, or pH and cation exchange capacity (CEC) for metals (Cr, Cu, Ni & Zn). The project-specific soil properties analysed at one sample location (ID: TP11_0.3-0.4_230925), in natural silty clay and used to calculate the EILs are listed below:

• pH: 5.1

- TOC: 0.74%
- CEC: 5.2 meq/100g
- Fe: 6.6%
- Clay: 60%

The EIL criteria presented for arsenic (As), naphthalene and DDT are generic EIL values irrespective of their physiochemical properties sourced from Table 1(B)5 of Schedule B1 of the ASC NEPM (2013). Calculated site-specific EILs are presented in **Table 10** below.

Table 10. Site-specific EIL criteria

Chemical	Site specific EIL (mg/kg)							
Cr ^{2,6}	730							
Cu ^{3,6}	90							
Ni ^{4,6}	40							
Zn ^{5,6}	220							
As ¹	100							
Pb1 ¹	1,100							
Naphthalene ¹	170							
DDT ¹	180							

Notes to Table 10

1- Generic EIL, as per Table 1B (5) of Schedule B1 of ASC NEPM (2013).

2- Cr ACL calculated using % clay, % Fe content and adopted as EIL, as per Table 1B (2) of Schedule B1 of NEPM (2013).

3- Cu ACL calculated using CEC, pH data, % organic carbon content, % Fe and adopted as EIL, as per Table 1B (2) of Schedule B1 of NEPM (2013).

4- Ni ACL calculated using CEC and % Fe data and adopted as EIL, as per Table 1B (3) of Schedule B1 of NEPM (2013).

5- Zn ACL calculated using a conservative modelled pH, % Fe and CEC data and adopted as EIL, as per Table 1B (1) of Schedule B1 of NEPM (2013). 6- Aged ACLs derived assuming a low traffic volume.

6.6 Ecological Screening Levels (ESLs)

For petroleum hydrocarbons, ESLs have been derived in ASC NEPM (2013) based upon fraction ranges of hydrocarbons, BTEXN component and benzo(a)pyrene (BaP) together with soil texture classes. These ESLs are of low reliability except for the volatile and semi-volatile hydrocarbon fractions which are of moderate reliability. The ESLs are applicable for assessing risk to terrestrial ecosystems and will be adopted for the investigation to be protective of soils in an urban residential and public open space land use scenario.

The adopted ESLs are designed to be protective of soil fauna, soil processes plants. The ASC NEPM (2013) states that these factors only apply within the rhizome (i.e. zone in the top two metres of soil) and as such ESL criteria need not be applied to chemical results below this depth. ESL threshold criteria for fine-grained soils are summarised in **Table 11**.

Table 11. Ecological screening levels for soil contaminants

Chemical	ESL – Urban Residential and public open space (for fine grained soils) (mg/kg)
F1 C6-C10	180
F2 C10-C16	120
F3 >C16-C34	1300
F4 >C34-C40	5600
Benzene	65

Chemical	ESL – Urban Residential and public open space (for fine grained soils) (mg/kg)
Toluene	105
Ethylbenzene	125
Xylenes	45
Benzo(a)pyrene	0.7

6.7 PFAS

The HEPA PFAS National Environmental Management Plan 2.0 (2020) provides guidance on the management of PFAS impacted soils. The classes of soil criteria defined in the PFAS NEMP National Environmental Management Plan 2.0 (2020) for human Health Investigation Levels (HIL) and Ecological investigation level are presented in **Table 12** below.

Table 12. Summary of the adopted assessment criteria for PFAS in soil

Soil Criteria (Human Health)	PFOS + PFHxS (mg/kg)	PFOA (mg/kg)
Residential with accessible gardens (HIL-A)	0.01	0.1
Soil Criteria (Ecological)	PFOS (mg/kg)	PFOA (mg/kg)
Ecological direct exposure	1	10
Ecological indirect exposure	0.01	NA
Ecological indirect exposure in areas of low accessible soil	0.14	NA

6.8 Aesthetics

As outlined in Section 3.6 of NEPM Schedule B1, the aesthetic quality of accessible soils should be considered even if analytical testing demonstrates that concentrations of CoPCs are within the SAC. There are no quantifiable guidelines in determining if soils are appropriately aesthetic; however, the NEPC (2013) does indicate that professional judgement concerning the quantity, type and distribution of foreign materials and / or odours about the specific land use should be employed.

The following scenarios (but not exclusively) would trigger further aesthetic assessment:

- Hydrocarbon sheen on surface water;
- Anthropogenic soil staining; and
- Odorous soils, i.e., petroleum hydrocarbon odours or hydrogen sulfidic odours in soil.

6.9 Vapour Screening Criteria

This assessment was undertaken for screening purpose with the aid of Photoionization Detector (PID). Detections more than 10ppm are to be considered for further analysis.

7 Site Investigation Design and Procedure

7.1 Pre-Work Procedure

Prior to the commencement of the sampling works, a site-specific SWMS was developed, discussed, and signed by ADE staff in a pre-start toolbox talk.

7.2 Sampling Design

The investigation was designed using the data quality objectives (DQO) as defined by the US EPA and the NSW EPA in the "Guidelines for the NSW DEC Site Auditor Scheme" (3rd Edition), (NSW EPA, 2017) and Australian Standard AS 4482.1 2005 (AS, 2005).

Based on area of the site the NSW EPA 2022 sampling design guidelines recommend a sampling density of approximately 25 sampling points. The sample design was for preliminary screening and consisted of the following sample locations, which were collected and analysed to ascertain the level/ extent of contamination (if any):

- 17 test pits for soil were collected in a grid pattern throughout the site and submitted for laboratory analysis. Test-pitting was carried out with an excavator and collection of the top 0.0 -0.1 m and limited samples (4) at 0.3-0.4m depth of the soil profile.
- 10 soil samples were collected from drilled geotechnical boreholes at shallow depths (0.5m) for a total of 27 samples.
- 2 soil vapour samples were collected to screen for vapour intrusion due to the potential for impacted groundwater and that the site is downgradient from industrial sites.

7.3 Intrusive Works (Soil Sampling)

Prior to commencing intrusive works, existing services on site were identified and avoided after reviewing Before You Dig Australia (BYDA) plans for the site followed by underground service clearance by a licensed service locator on 21 September 2023. The intrusive soil investigation was conducted over 2 separate days on the 25th September 2023, the 4th of October and soil vapour installation was completed on the 4th of October 2023 by a qualified environmental consultant from ADE. A total of 17 sampling locations were advanced using an excavator to complete 17 test pits to a maximum depth of 1.0 m BGL (ID: TP1 to TP17) and ten samples were collected from geotechnical boreholes up to a depth of to 0.5 m BGL (ID: BH1—10). Samples were collected using fresh nitrile gloves and placed in clean laboratory provided analyte suitable glass jars with Teflon lined lids and small zip lock bags and PFAS samples in HDPE, Teflon free containers before being placed into a pre-cooled Esky.

Replicate soil samples (blinds and splits) were collected by collecting samples from the middle of the excavator bucket directly into jars. The jars were filled to capacity to ensure minimal headspace was present prior to tightly securing the lid and then placed into a pre-cooled Esky. All soil samples were screened for the presence of VOCs using a PID calibrated with isobutylene gas at 100 ppm. Screening involved placing the soil

sample in a resealable plastic zip lock bag, agitating the sample then inserting the PID tip into the headspace and recording the reading.

Soil samples for asbestos assessment were collected in a 500ml bag and analysed w/w asbestos fines using 10 litre gravimetric methods by separating through 7mm sieve and weighing fragments, fibre bundles and other asbestos debris as per NEPM (2013 B2) and the guidelines for assessment, remediation, and management of asbestos contaminated sites WA 2021.

A total of thirty-five (35) primary soil samples, one intra- and one inter-laboratory sample were submitted for laboratory analysis. **Table 13** below show the sampling and analytical schedule.

Table 13: Sampling and analytical program - soil	Table 13:	Sampling and	analytical	program - soil
--	-----------	--------------	------------	----------------

Location ID	Sample Depth	Sample Type (Fill /Natural)	PID (ppm)								Analytes				
	(mBGL)		u 1 <i>,</i>	TRH	BTEXN	НМ	РАН	ОСР	OPP	PCBs	VOCs	Cyanide, Phenolics	PFAS	Physical parameters*	ASB (w/w%)
TD1	0.1-0.2	Fill	0.6	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
TP1	0.5-0.6	Natural	0.5	Х	Х	Х	Х	Х	Х	Х					
TP2	0.1-0.2	Fill	2	Х	Х	Х	Х	Х	Х	Х					Х
TDO	0.0-0.2	Fill	0.7	Х	Х	Х	Х	Х	Х	Х					Х
TP3	0.3-0.4	Natural	0.6	Х	Х	Х	Х	Х	Х	Х					
704	0.0-0.2	Fill	0.7	Х	Х	Х	Х	Х	Х	Х					Х
TP4	0.5-0.6	Natural	0.5	Х	Х	Х	Х	Х	Х	Х					
TP5	0.0-0.2	Fill	0.9	Х	Х	Х	Х	Х	Х	Х					Х
TP6	0.0-0.2	Fill	0.8	Х	Х	Х	Х	Х	Х	Х					Х
	0.0-0.2	Fill	0.4	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
TP7	0.4-0.6	Natural	0.7	Х	Х	Х	Х	Х	Х	Х					
TP8	0.0-0.2	Fill	0.4	Х	Х	Х	Х	Х	Х	Х					Х
	0.1-0.2	Fill	0.4	Х	Х	Х	Х	Х	Х	Х					Х
TP9	0.4-0.5	Natural	0.6	X	X	X	X	X	X	X					
TP10	0.0-0.2	Fill	0.3	X	X	X	X	X	X	X					Х
	0.0-0.2	Fill	N/A	X	X	X	X	X	X	X	Х	Х	Х		X
TP11	0.3-0.4	Natural	N/A	X	X	X	X	X	X	X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A	~	Х	~
TP12	0.0-0.1	Fill	0.4	X	X	X	X	X	X	X				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Х
TP13	0.1-0.2	Fill	0.1	X	X	X	X	X	X	X					X
TP14	0.0-0.2	Fill	0.8	X	X	X	X	X	X	X					X
TP15	0.0-0.2	Fill	1.1	X	X	X	X	X	X	X					X
TP16	0.1-0.2	Fill	1.6	X	X	X	X	X	X	X					X
	0.0-0.1	Fill	0.4	X	X	X	X	X	X	X					X
TP17	0.4-0.5	Natural	0.4	X	X	X	X	X	X	X					X
	0.0-0.1	Fill	-	X	X	X	X	X	X	X					~ ~ ~
BH02	1.5	Natural	-	X	X	X	X	X	X	X					
BH3	0.0-0.1	Fill	-	X	X	X	X	X	X	X					
BH04	1.0	Natural	_	× ×	X	X	X	X	X	X					
BH5	0.0-0.1	Fill	-	X	X	X	X	X	X	X					
BH06	1.0	Natural	-	X	X	X	X	X	X	X					
BH00 BH7	0.0-0.1	Fill	-	X	X	X	X	X	X	X					
BH8	0.0-0.1	Fill	-	× X	X	X	X	X	X	X					
ВН9	0.0-0.1	Fill	-	X X	X	X	X	X	X	X					
BH09	1.0	Natural	-	X	X	X	X	X	X	X					
SP1**	0.0-0.1	Fill		Х	X	Х	Х	Х	Х	Х					

Notes

TRH Total Recoverable Hydrocarbons

BTEXN Benzene, toluene, ethylbenzene, total xylenes and naphthalene

HM Heavy metals

PAH Polycyclic Aromatic Hydrocarbons

OCP Organochlorine pesticides

OPP Organophosphate pesticides

PCB Polychlorinated biphenyls

VOC Volatile organic compounds

PFAS Per- and Polyfluorinated Substances (PFAS)

* pH, Electrical conductivity (EC), Cation Exchange Capacity (CEC), Total organic carbon (TOC)

ASB % Asbestos (weight/weight) in soil

** SP1 sample location advanced into shallow stockpile present on site

7.3.1 Soil Vapour Probes

Soil vapour probes were installed in two of the boreholes (ID: BH05 and BH07) Construction details are provided in logs in Appendix B – Test pit logs, Borehole logs, SV Installation logs.

7.4 Documentation

A field observation log was kept by sampling personnel during the soil sampling. Details recorded in the log included:

- Soil test pit/ sample IDs;
- Soil profile notes;
- Sampling method;
- Sample identification;
- Sample description; and
- Sample point measurements.

A comprehensive master sample register was maintained. As samples were received, they were given a unique sequential number from the sample register into which details from the labels were entered. Before packing and dispatch of samples for analysis, a CoC form was completed. This form recorded details of the individual samples being dispatched, and the type of analysis required for each sample.

7.5 Laboratory Analysis

All copies of the completed CoC forms were retained on the central filing system and the originals were sent to the analytical laboratories together with the samples. The following outlines the NATA accredited laboratories used for analytical testing:

- Primary soil, samples collected by ADE for the analysis of heavy metals, TRHs, PAHs, BTEX, OCPs, OPPs, PCBs and asbestos were submitted to Envirolab Services Sydney;
- The intra-laboratory soil sample (BR1) collected by ADE for the analysis of heavy metals, TRHs, PAHs, BTEX, OCPs, OPPs and PCBs were submitted to Envirolab Services Sydney and;
- The inter-laboratory soil sample (SR1) collected by ADE for the analysis of heavy metals, TRHs, PAHs, BTEX, OCPs, OPPs and PCBs were submitted to Eurofins Sydney.

7.6 Laboratory Details

Primary soil samples were submitted to Envirolab – Address: 12 Ashley St, Chatswood NSW 2067. Triplicate samples collected were submitted to Eurofins – Address:17 Magowar Road , Girraween NSW 2145.

Both laboratories are NATA accredited for the requested analysis.

8 Results

8.1 Soil Profile

In-situ shallow soils across the site generally consisted of Silty CLAY topsoil overlaying natural clayey sand / sandy clay with weathered shale bedrock encountered from between 0.35 and 1.15 metres below ground level (mBGL). See 8 for summary of the soil lithology across the site and Appendix B – Test pit logs, Borehole logs, SV Installation logs.

Table 14 Soil Profile

Lithology	Approximate Depth Range (m BGL)	Material Description
Fill/Topsoil	0.0—0.2	Silty CLAY, low to medium plasticity, brown mottled grey, trace of angular gravel and organic root matter, moist, no odour or staining.
Natural Soils	0.2—0.6	Silty Clay low to medium plasticity, grey- brown trace of subangular gravel.
Bedrock	>0.8-1.9	Extremely weathered SHALE: with some clay bands

No foreign materials were identified across the site surface. No asbestos containing materials (ACM) were identified. Refer to logs (Appendix B – Test pit logs, Borehole logs, SV Installation logs).

8.2 Potential Contamination (Visual and Olfactory)

During fieldworks, ADE noted that the site surface and subsurface soil was free from any visual signs of contamination. No discoloration or odours were noted on the site surface or within subsurface soils. Refer to Appendix C – Photographs for photographs taken during the fieldworks.

The highest PID reading was noted to be 2 ppm which is not indicative of hydrocarbon/ volatile impact. PID readings have been provided on detailed test pit logs within Appendix B – Test pit logs, Borehole logs, SV Installation logs and calibration certificate has been provided in Appendix D – Equipment calibration certificate (PID and GFM).

8.3 Analytical results

Tabulated laboratory results compared to the adopted SAC are presented in **Appendix E** –**Results & UCL Summary Table** with laboratory certificates presented in **Appendix F** – **Analytical Reports and Chain of Custody**. The reported concentrations of CoPC were either below the practical quantitation limit (PQL) and / or the SAC when considering the suitability of the site for ongoing use as a high school and proposed development.

8.3.1 Organochlorine and organophosphorus pesticides (OCPs/OPPs) and Polychlorinated biphenyls (PCBs)

All soil samples submitted for analysis did not report any concentration above PQL for OCP (0.1mg/kg), OPP (0.1mg/kg) or PCBs (0.5mg/kg).

8.3.2 Petroleum Hydrocarbons

Analytical concentrations for TRH and TPH in all samples were reported below SAC. Eleven (11) samples reported detections of TRH and TPH. A silica gel clean-up was conducted on one sample (ID: BH2_0.0-0.1) for TPH with non-detect results showing that the concentrations were partially attributed to natural organic sources. Additionally, there was no staining or indicators of oil staining.

8.3.3 Heavy Metals

Heavy metals concentrations were detected for most soil samples collected across the site, of these samples there was one sample where an exceedance was observed. TP2_0.1-0.2 which showed an exceedance of Lead over the NEPM HIL-A criteria for residential soil. UCL analysis was conducted on the lead exceedances. The UCL of the mean with 95% confidence for lead was calculated to be 141.3 mg/kg which is below the adopted SAC. The UCL of the mean with 95% confidence for lead was calculated to be 123.6 mg/kg which is below the adopted SAC. The UCL of the mean with 95% confidence for lead was calculated to be 0.392 mg/kg which is below the adopted SAC.

8.3.4 Asbestos

No asbestos was detected as bonded fragments or free fibres within soil material in any of the samples submitted for laboratory analysis.

8.3.5 Polyaromatic hydrocarbons (PAHs)

All soil samples except one (ID: TP2 (0.1-0.2) reported concentrations below the adopted site assessment criteria. One sample (ID:TP1_0.0-0.2) recorded a concentration of 1.4 mg/kg for Benzo(a)pyrene, exceeding the ESL criteria of 1.4 mg/kg. Following this, UCL analysis was conducted on the benzo(a)pyrene exceedances documented in Section 8.4.

8.3.6 Benzene, Toluene, Ethylbenzene, Xylene (BTEX)

All soil samples submitted for analysis did not report any exceedances above the adopted SAC for BTEX.

8.3.7 PFAS

All soil samples submitted for analysis did not report any exceedances above the adopted SAC for PFAS.

8.4 Statistical treatment of results

A comprehensive UCL analysis was performed on instances exceeding specified levels for lead, benzo(a)pyrene, and TRH (C16-C43). In cases where the UCL was employed, all samples showed concentrations below 2.5 times the criteria. Furthermore, for lead, TRH, and benzo(a)pyrene, if results fell

below the Limit of Reporting (LOR), a conservative approach was adopted. The respective LOR values for these analytes were used to establish the dataset required for UCL analysis.

8.5 Soil vapour screening results

Both established soil vapour wells located at BH5 and BH7 were screened using a GFM 436 gas analyser, after 3 minutes all gases screened were less than 10% v/v with gases such as CO, H_2S and hexane exhibiting concentrations less than 1% (refer to **Appendix B** – **Test pit logs, Borehole logs, SV Installation logs**). Based on the initial screening results it was concluded full laboratory vapour analysis was not required.

9 Quality assurance and quality control (QAQC)

The comprehensive field and laboratory quality assessments conducted as part of the environmental investigation yielded reassuring results, with no evidence of any data quality issues including field and laboratory data collection. Limited number of sampling was completed for the following analysis with all results below the limit having no impact on overall quality of the findings. These findings provide confidence in the reliability and accuracy of the collected data. Data Quality Objectives are presented in **Appendix G** – **Data Quality Objectives** with Data Quality Assessment is provided in **Appendix H** - **Data Quality Assessment**.

10 Revised Conceptual Site Model

Please note that this CSM is based on the data obtained from the field works and analysis of selected samples. This CSM should be revised and updated in future if further assessment/ development is undertaken. The revised conceptual model does not identify any indirect sources causing concern in the investigation area.

10.1 Potential Contamination Sources

The potential sources (indirect) have had no influence on site's contamination status after assessment of analytical results.

10.2 Potential Contaminants of Concern

No contaminants of concern were identified during assessment.

10.3 Sensitive Receptors

Potential human receptors at the site include:

- Students and Teachers
- Visitors to the site
- Future maintenance workers undertaking subsurface construction maintenance works
- Construction / demolition / earthmoving workers involved with any future development works;

Potential ecological receptors at the site include:

• Flora and fauna that inhabit or travel through the site.

10.4 Potential Contaminant Pathways

There is no source and contamination of potential concern identified after the detailed site investigation. Hence, pathway is not a concern in this chapter

Table 15 Preliminary Source-Pathway-Receptor Analysis

Potential source	СоРС	Receptor	Pathway	Risk	SPR Linkage	Notes
		Onsite		rating		
Hazardous building Materials Asbestos containing material	Asbestos, Heavy metals	Human – current and future site users, primary school children, teachers, workers neighbours & visitors	Human - Dermal contact, ingestion, inhalation	LOW	Complete vs NA	The building onsite we paint or broken expose No fragments of asbest
used in current structures and potential use of lead paint		Ecological - Rhizome soils	Ecological – Vertical and lateral migration of potential contaminants through the soil, Leaching and migration via groundwater, Plant uptake		Complete vs NA	during the site inspect No exceedances were
Potential uncontrolled fill material Uncontrolled /	Heavy metals, TRH, BTEX, PAH, pesticides,	Human – current and future site users, primary school children, teachers, workers neighbours & visitors	Human - Dermal contact, ingestion, inhalation	LOW	Complete vs NA	Site history does not s onsite, and there were noted during site insp
uncharacterised imported fill materials - potentially historically used to fill the site during the construction of current structures	asbestos	Ecological – Site fauna, underlying soil processes and soil fauna, groundwater, off site surface water	Ecological – Vertical and lateral migration of potential contaminants through the soil, Leaching and migration via groundwater, Plant uptake		Complete vs NA	No exceedances were
General pest control and pesticides that could have been sprayed or injected on	OCPs / OPPs / Arsenic	Human – current and future site users, primary school children, teachers, workers neighbours & visitors	Human - Dermal contact, ingestion, inhalation	LOW	Incomplete vs NA	Historical use of site a landscaping for the sa No exceedances were
or underneath concrete slabs.		Ecological - – Site fauna, underlying soil processes and soil fauna, groundwater, off site surface water	Ecological – Vertical and lateral migration of potential contaminants through the soil, Leaching and migration via groundwater, Plant uptake		Complete vs NA	
		Offsite	· · · · · · · · · · · · · · · · · · ·			
Industrial warehouse Potential asbestos containing cement roof on warehouse immediately north of the site.	Asbestos	Human – current and future site users, primary school children, teachers, workers, neighbours & visitors	Human - Inhalation	LOW	Incomplete vs NA	Over time, asbestos ro being exposed to sun released and spread t Free asbestos fibres a surface samples, sam No exceedances were
Used car dealer. Potential petrol or oil spillage from adjacent property to the north	Petroleum hydrocarbons TRH, BTEX, naphthalene and lead.	 Human – current and future site users, primary school children, teachers, workers & visitors Ecological – Onsite flora and fauna, soil microbiota, local groundwater 	Human - Dermal contact, inhalation	LOW	Complete vs NA	No visual or olfactory were noted onsite. No exceedances were
Former Reckitt Benckiser and Pfizer facilities Former chemical, pharmaceutical and veterinary production, and waste generation to the north and upgradient of the site	TRH, BTEX, PAHs, Metals, OCPs / OPPs	 Human – current and future site users, primary school children, teachers, workers, neighbours & visitors Ecological – Onsite flora and fauna, soil microbiota, local groundwater 	Human - Dermal contact, ingestion, inhalation	LOW	Complete vs NA	Intrusive investigation characterise the soil to soil and/ or shallow go No exceedances were

Notes:

HIGH - - Intrusive soil sampling potentially contaminating site activities warranting need for intrusive works to confirm the presence or absence of contamination...

MODERATE - - Intrusive soil sampling cannot rule out the presence of potentially contaminating site activities without undertaking recommended intrusive works.

LOW - Intrusive soil sampling has not identified any potentially contaminating site activities

were observed to be in good condition with no flaking posed cement sheeting.

bestos containing material was observed on the ground ection.

ere observed above adopted SAC criteria

ot suspect that there were ever any contaminating uses vere no visual / olfactory indications of contamination respection and intrusive field works. ere observed above adopted SAC criteria

e as orchard farms can result in use of pesticides and same resulting in potential importation of fill materials. ere observed above adopted SAC criteria.

s roofs can deteriorate and disintegrate after years of un and rain small amounts of asbestos fibres can be d to the site as air-borne dust particles. s are not visible to the naked eye and laboratory of

mpling was undertaken as part of this investigation. ere observed above adopted SAC criteria

ry indications of petroleum hydrocarbon contamination

ere observed above adopted SAC criteria

ion was carried out CoPC in sub-surface soils and to il type and the potential for migration of CoPC through groundwater.

ere observed above adopted SAC criteria

11Conclusions and Recommendations

11.1 Summary of Findings

11.1.1 Summary of Site History

- A review of historical aerial photographs indicates that the site has been used primarily as a school since 1942.
- Most school structures were built between the 1940s and 1960s, the site has remained relatively unchanged since 1990 with minimal changes to vegetation and the landscape during this time.
- The surrounding areas of the site have seen continuous major industrial developments to the north, west and south.

11.1.2 Summary of Site Contamination Investigation

- Exceedances to the adopted SAC were noted, however considered to be insignificant post silica gel cleanup and statistical assessment reported in any of the soil samples collected during this investigation.
- All chemical testing of the soils returned results either below the LOR for and / or the adopted SAC.
- ACM was observed on service pits.

11.2 Conclusion

Following the site walkover, desktop study and intrusive (test pit) investigation, ADE considers that there is a low risk of contamination that has occurred due to past activities undertaken at the site. ADE does not consider further environmental assessment at the site required due to the following:

- The limited soil sampling undertaken during this investigation reported concentrations of CoPC below the SAC for residential use and public open space.
- No underground petroleum infrastructure was identified at the site.
- The site surface was free from any visual signs of contamination (staining, olfactory)
- No sheen or odours were detected in the test pits excavated.
- No evidence of contaminant migration was found during soil sampling or soil vapour screening.

11.3 Recommendations

Should asbestos or other environmental contamination (e.g. Staining, odours, sheens) be identified during any future bulk excavation work at the site an Unexpected Finds protocol and proper safety procedures should be implemented. If groundwater is encountered during future excavation works, a groundwater assessment may be required.

11.4 Site Suitability

Based on the available information and assessment, ADE considers the site is suitable for continued use as a primary school and for the proposed development

11.5 Duty to Report under Section 60 CLM Act 1997

Based on the low risk of offsite migration of contamination and the historical use of the site as a school, as well current test results at the site, ADE considers there is no duty to report contamination to the NSW EPA under Section 60(3)(a) of the CLM Act, as based on information collected for this assessment, the site is not likely to be contaminated.

11.6 Limitations Specific to this Assessment:

The assessment included limited sampling and had no coverage of groundwater. The number of samples collected from the whole site are meant for screening purposes only and may not represent the whole site conditions.

12 Limitations and Disclaimer

This report has been prepared for the exclusive use of the DoE and is limited to the scope of the work agreed in the terms and conditions of contract (including assumptions, limitations and qualifications, circumstances, and constraints). ADE has relied upon the accuracy of information and data provided to it by the DoE and others.

ADE has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia. No other warranty, expressed or implied, is made or intended. No one section or part of a section, of this report should be taken as giving an overall idea of this report. Each section must be read in conjunction with the whole of this report, including its appendices and attachments. The report is an integral document and must be read in its entirety.

To the fullest extent permitted by law, ADE does not accept or assume responsibility to any third party (other than the DoE) for the investigative work, the report or the opinions given.

The scope of work conducted, and report herein may not meet the specific needs (of which ADE is not aware) of third parties. ADE cannot be held liable for third party reliance on this document. Any third party who relies upon this report does so at its own risk.

The subsurface environment can present substantial uncertainty due to it complex heterogeneity. The conclusions presented in this report are based on limited investigation of conditions at specific sampling locations chosen to be as representative as possible under the given circumstances. However, it is possible that this investigation may not have encountered all areas of contamination at the site due to the limited sampling and testing program undertaken.

The material subject to classification pertains only to the site and subject area outlined within the report and must be consistent with the waste description reported. If there are any unexpected finds that are not consistent with this classification, ADE must be notified immediately.

ADE does not verify the accuracy or completeness of, or adopt as its own, the information or data supplied by others and excludes all liability with respect to such information and data. To the extent that conditions differ from assumptions set out in the report, and to the extent that information provided to ADE is inaccurate or incomplete or has changed since it was provided to ADE, the opinions expressed in this report may not be valid and should be reviewed.

ADE's professional opinions are based upon its professional judgement, experience, training, and results from analytical data. In some cases, further testing and analysis may be required, thus producing different results and/or opinions. ADE has limited its investigation to the scope agreed upon with the DoE.

This Limitation and Disclaimer must accompany every copy of this report.

13 References

- ADE (2023a) *Geotechnical Investigation Report, Melrose Park Public School, 110 Wharf Road, Ermington,* ref: A201023.0436.00_B_vd, dated: 17 November 2023
- ADE (2023b) *Preliminary Site Investigation Melrose Park Public School, 110 Wharf Road, Ermington,* ref: A101023.0436_PSI_v1f, dated: 01 November 2023
- Australian Standard AS 4482.1 Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds.
- Australian Standard AS 4482.2 Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances.
- National Environment Protection Council (NEPC). (2013). *National Environmental Protection* (Assessment of Site Contamination) Measure 1999, 2013 Amendment.
- NSW EPA. (2020) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.
- NSW EPA. (2017) *Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme* 3rd Ed.
- NSW Government. (1985) Environmentally Hazardous Chemicals Act 1985.
- NSW Government. (1995) National Environmental Protection Council (New South Wales) Act (1995).
- NSW Government. (1997a) Contaminated Land Management act 1997.
- NSW Government. (1997b) *Protection of the Environment Operations act 1997*.
- State Environmental Planning Policy (Planning Systems Resilience 2021)
- Work Health and Safety Act 2011.
- Work Health and Safety Regulation 2017.
- DEC. (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition
- NSW EPA (2015) Guidelines on the Duty to Report Contamination under the Contaminated Management Act 1997.
- National Environment Protection Council (NEPC). (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999, 2013 Amendment
- Workcover NSW Storage and Handling of Dangerous Goods (2005)

Appendix A - Figures

Client: Schools Infrastruct	ure NSW	Size: A3
Project: SINSW Melrose Park	Drawn: AC	Figure No.: 1
Date: 13-09-2023	Checked: SB	-
Proj No: A101023.0436	Scale: 1:595	Version: draft

Appendix B – Test pit logs, Borehole logs, SV Installation logs

5	8			IONS GRI		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					151	PIT NUMBER TP
CLI	IENT	Sc	hool l	nfrastr	ucture	NSW	PROJECT NA	ME _	Envi	ronme	ental Site Asse	essment
PR	OJE	CT NI	JMBE	R <u>A</u>	10102	3.0436	PROJECT LO	CATI	ON _	Melro	se Park PS, 1	10 Wharf Rd, Ermington NSV
DA	TE S	STAR	ED _	25/9/2	23	COMPLETED 25/9/23	R.L. SURFAC	E			D	ATUM
EX	CAV	ATIO		NTRAC	TOR	ANC Foster	SLOPE				B	EARING
			AMET	ER _			LOGGED BY	KA			C	HECKED BY SB
10	TES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
Ш						FILL Sandy CLAY, low plasticity clay, fine graine sand,dark-brown, with trace of organic matter (g	d rass root fibres).	м	S			
			_		CL	FILL fine sandy CLAY, low plasticity with trace in terracotta roof tile and ceramic fragments.	clusions of	м	S		TP1_0.1-0.2 230925	
			- 0 <u>.5</u> -		СН	NATURAL Silty CLAY, medium to high plasticity, light-grey mottles.	red-brown with	M	St		TP1_0.5-0.6 230925	
			- 1 <u>.0</u>			TP1 terminated at 0.95m						
			_									
			_									

2	E C	2	(ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128					TESTI	PIT NUMBER TP PAGE 1 OF		
сп	FNT	Sc		GR		P Telephone: 1300976922		MF	Envi	ronme	ontal Site Asses	sment		
						3.0436						0 Wharf Rd, Ermington NSW		
						COMPLETED _25/9/23								
						ANC Foster								
												N 6256767.74 m		
10	TES		1			1			1					
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations		
ш				<u>x11x x</u> 1 <u>y x1y</u>		TOPSOIL Sandy CLAY, low plasticity clay, fine g brown, with trace of organic matter (grass root fi roots).	rained sand, bres and tree	M	S					
			-								TP2_0.1-0.2 230925			
			-											
			-		СН	NATURAL Silty CLAY, medium to high plasticity compacted.	, red-brown,	М	F					
			-											
			0.5											
						TP2 terminated at 0.55m								
			-											
			-											
			-	-										
			_											
			1.0											
				1										
			-											
			-											
			_											
			-	1										
			1.5											

9	E	P		IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					1591 6	PIT NUMBER TF
	IENT	- Sc				NSW	PROJECT NA	ME	Envi	ronme	ntal Site Asses	sment
						3.0436						0 Wharf Rd, Ermington NSV
						COMPLETED 25/9/23 ANC Foster						
10	TES								1			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
IJ			_			FILL Sandy CLAY, low plasticity clay, fine graine with trace of organic matter (grass root fibres) a fragment.	ed sand, brown, nd terracotta tile	М	St		TP3_0.0-0.2 230925	
			-		СН	NATURAL Silty CLAY, medium to high plasticity light-grey mottles with trace of organic matter (ro		M	F			
			_								TP3_0.3-0.4 230925	
			0 <u>.5</u>									
						TP3 terminated at 0.6m						
			_	-								
			_									
			_									
			1 <u>.0</u>									
			_									
			_									
			_									
			_									
			1.5									

Ĭ.	6			GRI	DU	DIVIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922						PAGE 1 OF
L	ENT	Sc	hool l	nfrastr	ucture	NSW	PROJECT NA	ME _	Envi	ronme	ntal Site Asses	ssment
R	OJE	CT NI	JMBE	R <u>A</u>	10102	3.0436	PROJECT LO	CATI	ON _	Melros	se Park PS, 11	0 Wharf Rd, Ermington NSV
						COMPLETED _25/9/23						
						ANC Foster						
	TES			LR				<u>_NA</u>				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
IJ						FILL Sandy CLAY, low plasticity clay, fine grain with trace inclusion of organic matter (grass roo ceramic fragments.	ed sand, brown, t fibres) and	M	S		TP4_0.0-0.2 230925	
					СН	NATURAL Silty CLAY, medium to high plasticity red-brown with light-grey mottles.	v, compacted,	м	St			
			0.5								TP4_0.5-0.6 230925	
						TP4 terminated at 0.65m						
			1.0									
			-									
			_									
			_									
			1.5									

8	R	i o		AI IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					TEST	PIT NUMBER TP5 PAGE 1 OF 1
						e NSW						
PR	OJE	CT NI	JMBE	R <u>A</u>	10102	3.0436	PROJECT LO	CATI	ON _	Melro	<u>se Park PS, 11</u>	10 Wharf Rd, Ermington NSW
						COMPLETED <u>25/9/23</u>						
						ANC Foster						
		i									0	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш				<u>x 17</u> x 17 x 17		TOPSOIL Sandy CLAY, low plasticity clay, fine g brown, with trace of organic matter (grass root fi		M	S			
			-		CL	NATURAL Sandy CLAY, low plasticity clay, fine brown.	grained sand,	М	S		TP5_0.0-0.2 230925	
			- 0 <u>.5</u> -		СН	NATURAL Silty CLAY, high plasticity, red-brown light-brown mottles.	with	Μ	St			
			- 1 <u>.0</u> - - - - 1.5			TP5 terminated at 0.8m						

9	R			AI IONS GR								PIT NUMBER TP PAGE 1 OF
						NSW		ME	Envi	ronme	ntal Site Asses	ssment
PR	OJE	CT N	UMBE	R _ A	10102	3.0436	PROJECT LO	CATI	ON _	Melros	e Park PS, 11	0 Wharf Rd, Ermington NSW
DA	TE S	STAR	TED _	25/9/2	23	COMPLETED <u>25/9/23</u>	R.L. SURFAC	E			DA	
EX	CAV	ΑΤΙΟ	N CO	NTRAG	CTOR	ANC Foster	SLOPE				BE	ARING
EQ	UIP	MENT	Exc	cavato	r		COORDINATE	s_I	E 321	632.0	5 m N 625668	8.52 m
E	ST P	IT DI	AMET	ER _			LOGGED BY	KA			CH	IECKED BY SB
10	TES											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
Ш				<u>x1 /2</u> . <u>x</u> /2 . <u>x1 /2</u>	CL	TOPSOIL Sandy CLAY, low plasticity clay, fine g brown, with trace of organic matter (grass root fi		M	S			
			_	<u>\\</u> \ <u>\</u> \	CL	NATURAL Sandy CLAY, low to medium plasticit	valev fine				TP6_0.0-0.2 230925	
					CL	grained sand, brown.	y ciay, fine	М	S		230925	
			-									
			-		СН	NATURAL Silty CLAY, high plasticity, red-brown light-brown mottles.		М	St			
			0.5									
						TP6 terminated at 0.8m						
			_									
			1.0									
			-									
			-									
			-									
			_									
		1	1	1 I		1						

8	E	i o				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					TEST	PIT NUMBER TP PAGE 1 OF
CLI	ENT	r Sc			1000	NSW	PROJECT NA	ME	Envi	ronme	ental Site Asse	essment
						3.0436						10 Wharf Rd, Ermington NSW
DA	TE S	TAR		25/9/2	23	COMPLETED _25/9/23	R.L. SURFAC	E			D	
						ANC Foster						
	ST P TES		AMET	ER _			LOGGED BY	KA			c	HECKED BY SB
			Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	(mqq) C	Samples Tests Remarks	Additional Observations
: Method	Water	RL (m)	Dept	-						DID	Remarks	
Ш				$\frac{\sqrt{1}}{1} \cdot \frac{\sqrt{1}}{1}$	CL	TOPSOIL Sandy CLAY, low plasticity clay, fine g brown, with trace of organic matter (grass root fit	rained sand, pres).	М	S			
			-		CL	NATURAL Sandy CLAY, low to medium plasticity grained sand, brown with minor inclusions of tree	/ clay, fine e rootlets.	М	F		TP7_0.0-0.2 230925	
			_		СН	NATURAL Silty CLAY, high plasticity, red-brown light-brown mottles with inclusions of tree roots.		М	St			
			0 <u>.5</u> _								TP7_0.4-0.6 230925	
						TP7 terminated at 0.7m						
			-									
			-									
			1 <u>.0</u>									
			-									
			-									
			-									
			-									
			1.5									

	R	i i				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					TEST	PIT NUMBER TP8 PAGE 1 OF 1	
CI	IEN1	r _Sc	hool l	nfrasti	ructure	NSW	PROJECT NA	ME	Envi	ronme	ental Site Asse	essment	
PF	ROJE		UMBE	R _ A	10102	3.0436	PROJECT LO	CATI	ON _	Melro	se Park PS, 1	10 Wharf Rd, Ermington NSW	
D	TE S	STAR	TED _	25/9/2	23	COMPLETED 25/9/23	R.L. SURFAC	E			D	ATUM	
E)	CAV	ATIO	N CO	NTRAG	CTOR		SLOPE BEARING						
E	QUIPI	MENT	Ha	nd aug	ger		COORDINATE	S _[E 321	600.7	0 m N 62566	55.59 m	
TE	ST P	PIT DI	AMET	ER _			LOGGED BY	KA			C	HECKED BY SB	
N	DTES	;	1										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations	
AH				<u>x11/2 x</u> 1/2 x 1/2		TOPSOIL Sandy CLAY, low plasticity clay, fine g brown, with trace of organic matter (grass root fi	rained sand, bres).	М	S				
			-			brown, with trace of organic matter (grass root n	ures).				TP8_0.0-0.2 230925		
ADE_BOREHOLE 23.0436_TP.GPJ_GINT STD AUSTRALIA.GDT_24/10/23			 0. <u>5</u> 1. <u>0</u> 			TP8 terminated at 0.25m							

8	1	1	[ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128					TEST	PIT NUMBER TP PAGE 1 OF
			hool l	nfrast		Telephone: 1300976922 NSW 3.0436						ssment 10 Wharf Rd, Ermington NSV
DA EX EQ	TE S CAV UIPI	STAR ATIO	TED _ N CO	25/9/2 NTRAC	23 CTOR r	COMPLETED _25/9/23 _ANC Foster	R.L. SURFAC	E	E 321	569.3	D/ BE 6 m N 625667	ATUM EARING 76.35 m
	TES		Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
E Met	Water	RL	Dep	Gra	Syn Syn TJ	TOPSOIL Sandy CLAY, low plasticity clay, fine g brown, with trace of organic matter (grass root fi	rained sand, pres).	Mois	S S	ē.		
			-		CL	NATURAL Sandy CLAY, low to medium plasticit grained sand, brown.	y clay, fine	М	S		TP9_0.1-0.2 230925	
			-		СН	NATURAL Silty CLAY, medium to high plasticity, light-brown mottles.	red with	M	F		TP9_0.4-0.5 230925	
			-			TP9 terminated at 0.65m						
			-									
			1 <u>.0</u>									
			-									
			- 1.5									

8	ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COUR SILVERWATER NSW 2128 Telephone: 1300976922													
PR	OJE	CT NI	JMBE	R _ A	10102	3.0436	PROJECT LO	CATI	ON _	Melro	se Park PS, 1	10 Wharf Rd, Ermington NSW		
						COMPLETED 25/9/23								
							SLOPE BEARING							
		יוד DI <i>A</i>		ER _			LOGGED BY	KA			C	HECKED BY SB		
		·						Ħ						
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations		
ш				<u>x¹1_x</u> x 1 ₁ x ¹ 1 _x	CL	TOPSOIL Sandy CLAY, low plasticity clay, fine g dark-brown, with trace of organic matter (grass r		М	S		TD40.0000			
			-		CL	NATURAL Silty CLAY, medium to high plasticity light-brown mottles.	red with	М	F		TP10_0.0-0.2 230925			
			_											
			0 <u>.5</u> -		СН	NATURAL Silty CLAY, high plasticity, red-brown light-brown mottles.	with	М	St					
						TP10 terminated at 0.8m								
			-	-										
10/23			1.0											
A.GU														
KAL			-											
AUS														
			_											
20														
, С. С.														
436_1			-											
ADE_BOREHOLE 23.0436_TP.GPJ_GINT STD AUSTRALIA.GDT_24/10/23														
HOLE			-											
BCRE														
			1.5											

i c	5				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					TEST F	PIT NUMBER TP11 PAGE 1 OF 1
IEN	IT So	chool I	nfrastr	ucture	NSW	PROJECT NA	ME _	Envi	ronme	ental Site Asse	essment
ROJ	ECT N	UMBE	R <u>A</u>	10102	3.0436	PROJECT LO	CATI	ON _	Melro	se Park PS, 1	10 Wharf Rd, Ermington NSW
ΥE	STAR	TED	25/9/2	23	COMPLETED 25/9/23	R.L. SURFAC	E			D	ATUM
(CA)	νατιο	N CO	NTRAC	TOR	ANC Foster	SLOPE				В	EARING
QUIF	MENT	Exc	cavato	r		COORDINATE	S _E	E 321	546.2	7 m N 62567	03.21 m
ST	PIT DI	AMET	ER _			LOGGED BY	KA			c	HECKED BY SB
DTE	s										
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
			<u>x¹1/2 x 1/2 x¹1/2 x¹1/2 x x¹1/2 x</u>	CL	TOPSOIL Sandy CLAY, low plasticity clay, fine g dark-brown, with trace of organic matter (grass n	rained sand, oot fibres).	М	S		TD44.0000	
		-		CL	NATURAL Sandy CLAY, low plasticity clay, fine of brown.	grained sand,	М	S		230925	
		-		СН	NATURAL Silty CLAY, medium to high plasticity, light-brown mottles.	red-brown with	М	F		TP11_0.3-0.4 230925	
		0. <u>5</u> 1. <u>0</u> 									
	ATE (CA) QUIF ST DTE	ROJECT N ATE STAR (CAVATIO QUIPMENT SST PIT DI DTES (m) T	JENT School I ROJECT NUMBE ATE STARTED CAVATION COI ST PIT DIAMET DTES I I I I I I I I I I I I I I I I I I I	JENT <u>School Infrastr</u> ROJECT NUMBER <u>A</u> ATE STARTED <u>25/9/2</u> CCAVATION CONTRAC DUIPMENT <u>Excavato</u> ST PIT DIAMETER <u></u> DTES <u>DTES</u> <u>100000000000000000000000000000000000</u>	JENT <u>School Infrastructure</u> ROJECT NUMBER <u>A10102</u> ATE STARTED <u>25/9/23</u> CCAVATION CONTRACTOR DIPMENT <u>Excavator</u> ST PIT DIAMETER DTES I I I I I I I I I I I I I I I I I I I	EVENDED EVENT EVEN	Image: Provide the structure NSW PROJECT NA Interstructure NSW PROJECT NA ROJECT NUMBER A101023.0436 PROJECT NA Interstructure NSW COMPLETED 25/9/23 R.L. SURFACT Interstructure NSW COORDINATE COORDINATE Interstructure NSW COORDINATE COORDINATE Interstructure NSW Interstructure NSW Interstructure NSW Interstructure NSW Interstructure NSW Interstructure NSW <td< td=""><td>VILLENNIUM COURT SILVERVATER NEW 2128 PROJECT NAME SILVERVATER NEW 2128 PROJECT NAME ROJECT NAME PROJECT NAME PROJEC</td><td>ADDEDITED TO A DECIDENT OF A MILLENNIUM COURT SUPERVISE STREET OF THE DESCRIPTION OF A DECIDENT OF A DECIDENT</td><td>WITE 6/7 MILLENNIUK COURT SUVERVATED NEW PROJECT NAME Environme NODECT NUMBER A 101023.0433 PROJECT NAME Environme SUPER * STARTED _ 25/9/23</td><td>WIT 6 / TALLENNUM COURT Textbook Textbook </td></td<>	VILLENNIUM COURT SILVERVATER NEW 2128 PROJECT NAME SILVERVATER NEW 2128 PROJECT NAME ROJECT NAME PROJECT NAME PROJEC	ADDEDITED TO A DECIDENT OF A MILLENNIUM COURT SUPERVISE STREET OF THE DESCRIPTION OF A DECIDENT	WITE 6/7 MILLENNIUK COURT SUVERVATED NEW PROJECT NAME Environme NODECT NUMBER A 101023.0433 PROJECT NAME Environme SUPER * STARTED _ 25/9/23	WIT 6 / TALLENNUM COURT Textbook Textbook

8	E		1			ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					ILSIF	IT NUMBER TP1 PAGE 1 OF
Ľ	IENT	r So		157.49 (Fr		NSW	PROJECT NA	ME	Envi	ronme	ental Site Asses	ssment
۶R	OJE		UMBE	R _A	10102	3.0436						0 Wharf Rd, Ermington NSW
DA	TE S	STAR	TED	25/9/	23	COMPLETED _25/9/23	R.L. SURFAC	E			DA	ATUM
						ANC Foster						
			AMET	ER _			LOGGED BY	KA			Cł	IECKED BY SB
10	TES	<u> </u>	1						1			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
Ш				<u>x1</u> <u>x1</u> <u>x1</u> <u>x1</u> <u>x1</u> <u>x1</u> <u>x1</u> <u>x1</u>		TOPSOIL Sandy CLAY, low plasticity clay, fine g dark-brown, with trace of organic matter (grass r	rained sand, oot fibres).	M	S		TP12_0.0-0.1 230925	
			-		CL	NATURAL Sandy CLAY, low plasticity clay, fine brown.	grained sand,	М	S			
			-		СН	NATURAL Silty CLAY, high plasticity, red-brown		м	St			
			-			light-brown mottles.						
			-									
			0 <u>.5</u>									
			-			TP12 terminated at 0.7m						
			-	-								
			_	-								
			1.0									
				1								
			-									
			_									
			-	1								
			-									
			1.5									

9	K	P				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128					IESI FI	T NUMBER TP1 PAGE 1 OF
ᇿ	ENT	r Sc				Telephone: 1300976922 NSW	PROJECT NA	ME	Envi	ronme	ental Site Asses	sment
						3.0436						0 Wharf Rd, Ermington NSV
						COMPLETED _25/9/23		E			DA	TUM
						ANC Foster						
E	ST P	IT DI	AMET	ER			LOGGED BY	KA			СН	ECKED BY SB
10	TES					1						
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
Ш				<u>x¹17</u> x 17 x 17	CL	TOPSOIL Sandy CLAY, low plasticity clay, fine g dark-brown, with trace of organic matter (grass r	rained sand, oot fibres).	M	S		TP12_0.0-0.1 230925	
			_		CL	NATURAL Sandy CLAY, low plasticity clay, fine brown.	grained sand,	М	S			
			_		СН	NATURAL Silty CLAY, high plasticity, red-brown light-brown mottles (10%).		М	St			
			0 <u>.5</u>									
						TP13 terminated at 0.7m						
			_									
			_									
			1 <u>.0</u>									
			_									
			-									
			_									

3	12	C	[ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128					TEST P	PIT NUMBER TP1
			hool I	nfrasti	ucture	Telephone: 1300976922 NSW 3.0436						
DA EX	TE S CAV	star ⁻ Atio	TED N CO	25/9/2 NTRA(2 <u>3</u> CTOR	COMPLETED 25/9/23 ANC Foster	R.L. SURFAC	E			D. B	ATUM
TE		IT DI										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
Ш			_			FILL Sandy CLAY, low plasticity clay, fine graine with trace of organic matter (grass root fibres) an of ceramic tile fragment.	d trace inclusion	М	S			
			_		CL	NATURAL Sandy CLAY, low plasticity clay, fine of brown.	grained sand,	М	F	-	TP13 0.1-0.2	
			_		СН	NATURAL Silty CLAY, high plasticity, red-brown light-brown mottles.		м	Vst		230925	
			- 0 <u>.5</u>									
						TP14 terminated at 0.7m						
			-	-								
			-	-								
			1 <u>.0</u>	-								
			-									
			-									
			-									
			1.5									

3	1	1				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128					TEST PI	T NUMBER TP1 PAGE 1 OF
			hool	Infrast	ructure	Telephone: 1300976922 NSW 3.0436						
EX	CAV	ΆΤΙΟ	N CO	NTRA	CTOR	COMPLETED _25/9/23	SLOPE				BE	ARING
TE		PIT DI										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
Ш			-		CL	TOPSOIL Sandy CLAY, low plasticity clay, fine g dark-brown, with trace of organic matter (grass re		М	S		TP14_0.0-0.2 230925	
			-		CL	NATURAL Sandy CLAY, low plasticity clay, fine of brown.	grained sand,	M	S			
			0 <u>.5</u>		СН	NATURAL Silty CLAY, high plasticity, red-brown mottles.	with light-grey	M	St			
			-			TP15 terminated at 0.75m						
			-	-								
			1 <u>.0</u>	_								
			-	_								
			-	-								
			1.5									

	R	-		A IONS GR		ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					TEST P	IT NUMBER TP16 PAGE 1 OF 1
						NSW						
						3.0436						10 Wharf Rd, Ermington NSW
						COMPLETED _25/9/23 _ANC Foster						
NC	DTES	;	1			1		1				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш				<u>x¹1₂</u> <u>x</u> 1 ₂ <u>x</u> 1 ₂ <u>x</u> 1 ₂ <u>x</u>	CL	TOPSOIL Sandy CLAY, low plasticity clay, fine g brown, with trace of organic matter (grass root fil		м	S			
			-		CL	NATURAL Sandy CLAY, low plasticity clay, fine brown.	grained sand,	м	F		TP16_0.1-0.2 230925	
			- 0 <u>.5</u> -		СН	NATURAL Silty CLAY, high plasticity, red-brown mottles.	with light-grey	M	St			
ADE_BOREHOLE 23.0436_TP.GPJ_GINT STD AUSTRALIA.GDT_24/10/23			- 1 <u>.0</u> - - 1.5			TP16 terminated at 0.75m						

3	R	i o				ADE CONSULTING GROUP UNIT 6 / 7 MILLENNIUM COURT SILVERWATER NSW 2128 Telephone: 1300976922					TEST P	PIT NUMBER TP17 PAGE 1 OF 1
CL	IENT	Sc Sc	hool l	nfrastr	ucture	NSW	PROJECT NA	ME _	Envi	ronme	ental Site Asse	essment
PR	OJE	CT NI	JMBE	R <u>A</u>	10102	3.0436	PROJECT LO	CATI	ON _	Melro	se Park PS, 1	10 Wharf Rd, Ermington NSW
DA	TE S	STAR	ED _	25/9/2	23	COMPLETED 25/9/23	R.L. SURFAC	Ε			D/	ATUM
EX	CAV	ATIO		NTRAG	CTOR	ANC Foster	SLOPE				BI	EARING
EC	UIP	MENT	Exe	cavato	r		COORDINAT	ES _	E 321	521.4	9 m N 625674	48.82 m
TE	ST P	PIT DI	MET	ER _			LOGGED BY	KA			CI	HECKED BY SB
NC	DTES		1					1	1	1		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture Content	Consistency	PID (ppm)	Samples Tests Remarks	Additional Observations
ш				<u>x 1/2 x</u> 1/ x 1/	CL	TOPSOIL Sandy CLAY, low plasticity clay, fine g brown, with trace of organic matter (grass root fi	grained sand, bres).	м	S		TP17_0.0-0.1 230925	
			-		CL	NATURAL Sandy CLAY, low plasticity clay, fine brown.	grained sand,	M	F			
			0 <u>.5</u> - -		СН	NATURAL Silty CLAY, high plasticity, red-brown mottles.	with light-grey	M	Vst		TP17_0.4-0.5 230925	
ADE_BOREHOLE 23.0436_TP.GPJ_GINT STD AUSTRALIA.GDT_24/10/23			1 <u>.0</u> - - 1.5			TP17 terminated at 0.9m						

		_					N	101	I-CORE DRILL HOLE - GEOLOGICAL I	_OG	;			NO OB NC	: BH01 : A201023.0436.00
	LIENT DCAT	ION	: S : 1	SINSW 10 Wharf	Rd, E	rming	gton NS	SW 2′	PROJECT : Melrose Park Public School 14					: 1 C	
	DSITI				0			005	SURFACE ELEVATION (RL) :						TAL: 90°
				METHOD					MOUNTING : Track Mounted CONTRACT TED : 25/09/2023 DATE LOGGED : LOGGED			n Dril			DRILLER : MY ED BY : MM
				2 . 20/00		2711	2 0 0						0.		
				ILLING					MATERIAL		L				
PRITTING PR	CASING CASING	-14	LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE CONDITION	CONSISTENCY RELATIVE DENSITY	PENETI	ROMET	ER TEST	STRUCTURE & Other Observations
	~					_			FILL - Silty CLAY: low to medium plasticity, dark grey-brown, trace of fine angular gravel and organic root matter (top 200mm)		Ē		+ +	+	FILL -
AD/T			rooniteled					CL	0.40m Silty CLAY: low to medium plasticity, grey-brown, trace of trace of sub-angular gravel.		F to St				RESIDUAL SOIL
A						- - 0.8			0.80m Extremely weathered SHALE: with some clay bands	_					BEDROCK
-01 Prj: ADE 1.00.0 2018-08-01			!	1.00m SPT 3,4,10/300mr Refusal	n	- - - 1.0 - - - -					н				
E 1.00.0 2018-08-01				1.30m		1.2			Hole Terminated at 1.30 m						
tu 1001 - DGD LID: ADE						- 1.4									
10.03.00.09 Datgel Lab and IN S						- 1.6 - -									
7/08/2029 13:98 10:03 00:0						- 1.8 - -									
 						- 2.0 - -									
JG 23.0436.00.GPJ <						- 2.2 — - -									
AUE NON-CORED LL						- 2.4 - -									
- WITH DEFECT LABLE.GLB Log ADE NON-CORED LOG						2.6									
DATABASE - WITH DEFE						- 2.8 - -									
				lotoc fra					645°						-
de	e Exp tails o basis o	f abbr	evia	Notes for ations tions.					ADECONSULTING GROUP						

CLIE	NT	: 5	SINSW			Ν	101	I-CORE DRILL HOLE - GEOLOGICAL	LOC	6		B NC	: A201023.0436.00
LOC	ATIO	N : 1	110 Wharf	f Rd, E	Erming	gton NS	SW 2'	14			SHEET		
			METHOD	: Co	macc	ho Geo	205	SURFACE ELEVATION (RL) : MOUNTING : Track Mounted CONTRACT			ROM HORI n Drillina		DRILLER : MY
								ED : 25/09/2023 DATE LOGGED : LOGGED					ED BY : MM
						1							
PROG	RESS		RILLING					MATERIAL		×			
& CASING	WATER	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	ONSISTENC RELATIVE DENSITY	PENETROMETEI	R TEST	STRUCTURE & Other Observations
	_	0	아正					FILL - Silty CLAY: low to medium plasticity, brown mottled grey, trace of		<u>о</u>		+	FILL
		Not Encountered	1.00m U-63 SPT 4.12.25 N=37 <u>1.95m</u> <u>2.50m</u> SPT 6.27.25/350n Refusal 2.85m					FILL - Silly CLAY: low to medium plasticity, grey-brown, itrace of angular gravel and organic root matter (top 200mm) 5.40m Silly CLAY: low to medium plasticity, grey-brown, trace of angular gravel and organic root matter 1.70m Tzm Extremely to highly weathered SHALE: with some ironstone bands, reddish pale brown-grey Hole Terminated at 2.85 m	w < Pl	F to St			RESIDUAL SOIL
					-								-
Sec		atory	Notes for			1		(M2)				Ì	
detai	explanation is of ab sis of d	brevi	ations					ADECONSULTIONE THROUGH INNOVATION					

							Ν	101	I-CORE DRILL HOLE - GEOLOGICAL	LOC	;			NO	BH03 : A201023.0436.00
			: : • : •	SINSW 110 Whar	f Rd, E	Irming	gton NS	SW 2 ⁻	PROJECT : Melrose Park Public School 14					:10	
		TION							SURFACE ELEVATION (RL) :						TAL : 90°
				METHOD					MOUNTING : Track Mounted CONTRACT TED : 26/09/2023 DATE LOGGED : LOGGED			n Drill	-		DRILLER : MY ED BY : MM
		-											-	-	
	001	RESS							MATERIAL		≻				
		WATER	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE CONDITION	CONSISTENC RELATIVE DENSITY	PENETF	ROMET	ER TEST 5 20	STRUCTURE & Other Observations
	Ň					_			FILL - Sitty CLAY: low to medium plasticity, brown-grey, trace of sub-angular ironstone gravel and organic root matter (top 200mm)						FILL -
ADE NON-CORELLOG 23.0436.00.GPJ <			Not Encountered	1.00m SPT 2,12,19 N=31 1.45m 1.45m 3.50m D SPT SPT,520,40/420n Refusal					0.50m Sity CLAY: low to medium plasticity, brown mottled grey, trace of sub-angular gravel and organic root matter 1.15m Extremely to highly weathered SHALE: with some ironstone bands, reddish pale brown-grey		F to St				RESIDUAL SOIL
E.GLB Log				4.42m		-									-
				4.42m		- 4.5			Hole Terminated at 4.42 m						
1 DEFEC						-								 	-
E - WITF						-									-
HOLE DATABAS.						-									-
de	tails	s of ab	brevi	Notes for iations ptions.					ADECONSULTING GROUP						

	CLIE		. (SINSW			N	ION	I-CORE DRILL HOLE - GEOLOGICAL	-00	;		OB NO	: A201023.0436.00
ļ	LOC	ATIO	N : ′	110 Wharf	Rd, E	rming	gton NS	W 21	14			SHEET		
- H				METHOD	· Cor	macel	ha Gaa	205	SURFACE ELEVATION (RL) : MOUNTING : Track Mounted CONTRACT					TAL : 90° DRILLER : MY
- H									TED : 25/09/2023 DATE LOGGED : LOGGED					ED BY : MM
ļ														
		RESS							MATERIAL		≻			
H	& CASING		GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENC RELATIVE DENSITY	PENETROMETI	ER TEST	STRUCTURE & Other Observations
									FILL - Sity CLAY: low to medium plasticity, brown-grey, trace of angular gravel and organic root matter (top 150mm)					FILL -
						- 0.2 — -		CL			F to St			
						- - 0.4			0.40m Silty CLAY: low to medium plasticity, reddish brown mottled grey, trace of sub-angular ironstone gravel					RESIDUAL SOIL
			ntered			- - - 0.6								- - -
	AD/T		Not Encountered			-		СІ		w < PL	St - VSt			
-01						0.8 - - -								
DE 1.00.0 2018-08				1.00m SPT 13,40/300mm Refusal	1	- 1.0 -			1.10m					
Situ Tool - DGD Lib: ADE 1.00.0 2018-08-01 Prj: ADE 1.00.0 2018-08-01						- - 1.2			Extremely weathered SHALE: with some ironstone bands, reddish brown grey		н			BEDROCK -
ADE 1.00.0	<u> </u>			1.30m					Hole Terminated at 1.30 m				-	
tu Tool - DGD Lib:						1.4 -								
						- 1.6 — -								
1 13:59 10.03.00.09						- 1.8 -								-
/ingFile>> 27/09/2023						- 2.0 -								
3.0436.00.GPJ < <drav< td=""><td></td><td></td><td></td><td></td><td></td><td>- - 2.2 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drav<>						- - 2.2 -								
VON-CORED LOG 2						- - 2.4								-
BLE.GLB Log ADE						- - 2.6								-
DLE DATABASE - WITH DEFECT LABLE GLB Log ADE NON-CORED LOG 23.038.00.GFJ «DrawingFile»> 27/09/2022 13:59 10.03.00.09 Datgel Lab and In						- - 2.8 -								-
ĭΗ						-								
ă	detai	Explan Is of at sis of d	obrevi	Notes for ations otions.	_		_	_	ADECONSULTING GROUP					

CLIE	NT	:	SINSW			Ν	101	I-CORE DRILL HOLE - GEOLOGIC PROJECT : Melrose Park Public Scho		G	F	ILE / J		: A201023.0436.00
LOC	ATIO	N : '	110 Whar	f Rd, E	rminę	gton NS	SW 2	114					:10	
			METHOD			h = 0 = =	005	SURFACE ELEVATION (RL) : MOUNTING : Track Mounted CON						TAL : 90° DRILLER : MY
									TRACTOR GGED BY		וחם חנ			ED BY : MM
												-		
			RILLING					MATERIAL						1
PRILLING & CASING	WATER	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	IOISTURE	CONDITION CONSISTENCY RELATIVE	PENET	ROMET	ER TEST	STRUCTURE & Other Observations
& C	Š	ß	FIEX			0	-			° 8"	5	10 1	5 20	FILL
		Not Encountered	0.80m U-63 SPT 2.6.15/350m Refusal 1.55m 3.50m				CL	FILL - Sity CLAY: low to medium plasticity, brown-grey, trace of an gravel and organic root matter (top 200mm) 0.50m 120m Extremely to Highly weathered SHALE: with some clay bands, grey motified brown	gravel	PL H				RESIDUAL SOIL
ו					- - 4.5 — - - -									
detai	Explana Is of ab sis of d	obrevi	Notes for iations ptions.					ADECONSULTINGGROL						

						Ν	101	-CORE DRILL HOLE - GEOLOGICAL	LOG	;				BH08 : A201023.0436.00
CLIE LOC		: 5 N : 7	SINSW 110 Whar	f Rd, E	rming	gton NS	SW 21	PROJECT : Melrose Park Public School 14				IEET :		
	ITION							SURFACE ELEVATION (RL) :						AL : 90°
								MOUNTING : Track Mounted CONTRACT ED : 25/09/2023 DATE LOGGED : LOGGED			n Drilli			RILLER : MY
	_ 0.7			0/2020		_ 00.			2			0.12		
DDOO	DECO		RILLING					MATERIAL		~				
& CASING	WATER	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE CONDITION	CONSISTENC RELATIVE DENSITY	PENETR	OMETER	test 20	STRUCTURE & Other Observations
					-			FILL - Silty CLAY: low to medium plasticity, reddish brown mottled grey, trace of angular ironstone gravel and organic root matter (top 200mm)					 	FILL - - -
					0.2 — - -		CL			F to St			 	
					- 0.4 -			0.50m Silty CLAY: low to medium plasticity, pale reddish brown-grey, trace of						RESIDUAL SOIL -
					- 0.6			angular ironstone gravel						
1.000					- 0.8 -									-
11 FI). AUE 1.00.0 ZU 9-09-01			1.00m SPT 3,5,6 N=11	-	1.0 - - -									
- AD/T		Not Encountered			1.2 - - -		СІ		w < PL	St - VSt				
		Not	<u>1.45m</u>		1.4									
					1.6 — - - 1.8 —									
					- - 2.0			1.90m Extremely weathered SHALE: with some clay bands, pale brown-grey	_					BEDROCK -
20.0400.00. OF J <					- - - 2.2 - -					н				- - - - - -
			2.50m SPT 6,12/170mm		- 2.4 - -									
			2.67m		- 2.6 — -									-
			2.0/M		2.8			Hole Terminated at 2.67 m						- - - - - - - - - - - - -
detail	Explana Is of ab sis of d	obrevi	Notes for ations otions.			I	<u> </u>							

CLIE	ENT	: 5	SINSW	(I-CORE DRILL HOLE - GEOLOGICAL I PROJECT : Melrose Park Public School	LOG	ì	HOLE NO FILE / JOB NC SHEET : 1 C) : A201023.0436.00
	SITION		110 Whai	rf Rd, E	rmin	gton NS	SVV 21	SURFACE ELEVATION (RL) :	ANC	GLE FI	ROM HORIZON	
			METHOD) : Co	macc	ho Gec	205	MOUNTING : Track Mounted CONTRACT				DRILLER : MY
DAT	E ST/	ARTE	D : 26/0)9/2023	3 DAT	ECON	1PLET	TED : 26/09/2023 DATE LOGGED : LOGGED	BY : I	KE	CHECK	ED BY : MM
		DF	RILLING			<u> </u>		MATERIAL				
PROC	GRESS				Ê	0			шZ	∑		
DRILLING & CASING	WATER	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTUR	CONSISTEN RELATIVI DENSITY	PENETROMETER TEST	STRUCTURE & Other Observations
					-			FILL - Sitty CLAY: low to medium plasticity, brown mottled gry, trace of sub-angular ironstone gravel and organic root matter (top 150mm)				FILL _
					-		CL			F to St		-
												-
					0.5 —	777		0.50m Silty CLAY: low to medium plasticity, reddish brown-grey, trace of	-			RESIDUAL SOIL
						V//		sub-angular ironstone gravel				-
					-	$\langle / /$						-
			1.00m		- 1.0	\mathbb{V}/\mathbb{V}				VSt - H		-
			SPT 3,8,17 N=25		-	V//				V3L- H		-
			14-20		-	\mathbb{V}/\mathbb{I}						-
		tered	1.45m			\mathbb{V}/\mathbb{I}						-
AD/T -		Not Encountered	1.4511	-	1.5 -	<u> </u>		1.50m Extremely weathered SHALE: with some clay bands, pale brown-grey	—w < PL			BEDROCK
		Not E										-
					-							-
					-							-
4					2.0-							-
1 2 2					-					н		-
												-
			2.50m SPT	-	2.5 -							
			3,22,45 N=67									-
					-							-
			2.95m	_	-			3.00m				-
					3.0			Continued as Cored Drill Hole				-
2					-	-						-
2												-
					3.5	-						_
												-
					-	-						-
10.100					- 4.0 —	1						-
р Тр					4.0 -	-						-
					-	1						-
5]						-
					4.5 —	1						
						1						-
					-	{						-
					- 5.0 —	1						
					-	-						-
					-	1						-
												-
1					5.5 -	1						
						1						-
					-	-						-
					-	1						-
deta	Explan ils of al isis of c	obrevi										

	: SINS N : 110 V		Rd, E	Ermingto	CORED DRILL HOLE - GE PROJECT : Melrose					LC	DG		HOLE NO : BH10 FILE / JOB NO : A201023.0436.0 SHEET : 4 OF 4
OSITION			- /	0.4	SURFACE ELEVATIO	N (RL	.):				ANGL	E FR	OM HORIZONTAL : 90°
XCAVAT											OR : Le	-	-
ATESTA	ARTED: 2	6/09/2	2023	DATE	COMPLETED : 26/09/2023			LC	JGG	iED	BY : KE		CHECKED BY : MM
D	RILLING				MATERIAL								FRACTURES
ROGRESS	s & sts	((L)	ы	ing	E	STIMATE STRENGTI Is(50)	DH		ATURAL		ADDITIONAL DATA	
& CASING WATER	SAMPLES & FIELD TESTS	RL (m)	DEPTH (m)	GRAPHIC LOG	ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, etc as applicable)	Weathering	د - در -0.1	●-Axial Diametr ゔ゚゚゚ヮヮゔ	VH _ EH -10		⁰⁴ 00 00 000 (mm)	RQD (%)	(joints, partings, seams, zones, etc Description, orientation, infilling or coating, shape, roughness, thickness, other
– наз – наз	ls(50) a=1.556 MPa		-	· · · · · · · · · · · · · · · · · · ·	SANDSTONE: grey mottled brown (continued) 12.33m	SW		 ● 		 		81	
<u> </u>			-		Hole Terminated at 12.33 m					1			
			12.5 —				ļ	i i i	İ	į	i i i i		
			-							Ì			
			-										
			13.0 —				Ì	İİİ	Ì	Ì			
			-							Ì			
			13.5							ļ			
			-										
			-										
			14.0 —				ļ	İİİ	Ì	İ			
			-							Ì			
			-										
			- 14.5 —						Ì	Ì			
			- 14.5							Ì			
			-										
			-										
			15.0 —				ļ	İİİ		į			
			_										
			-										
			- 15.5 —				Ì		Ì	Ì			
			-				ļ			Ì			
			-										
			-										
			16.0 —				ļ	İİİ	Ì	į			
			-										
			- 16.5										
			-							ļ			
			-										
			-										
			17.0							Ì			
			-										
			-						 				
			17.5 —										
			-										
- Evolor	atory Notes	s for s											

NON-CORE DRILL HOLE- GEOLOGICAL LOG BH05

Project Number: A101023.0436 Project Name: Melrose Park Public School Client: SINSW

Location: 110 Wharf Rd, Ermington NSW 2114

Start Date: 26/09/2023 Finish Date: 26/09/2023 Contractor Legion Drilling Excavtion Method Comaccho Geo 205 Mounting Track Mounted

Comme	ents:							ogged by: hecked by		
Drilling and Casing	Ground Water	Depth (m)	Samples and Field Tests	Graphic Log	Group Symbol	Material Description	Moisture Condition	Consistency Relative Density	Well Diagram	Additional Observations
AD/T		- 0.4			CL	FILL - Silty CLAY: low to medium plasticity, brown-grey, trace of sub-angular gravel and organic root matter (top 200mm)	w <pl< td=""><td>F to St</td><td>–Bentonite</td><td></td></pl<>	F to St	–Bentonite	
		- 0.6 - 0.8 	D SPT 3,4,8 N=12		CI	Silty CLAY: low to medium plasticity, reddish dark borwn grey, trace of sub-angular ironstone gravel Extremely weathered SHALE: with some clay		 St	HDPE HDPE HDPE HDPE HDPE HDPE HDPE HDPE HDPE HDPE HDPE HDPE HDPE	
		- 1.8 2 2 2.2 2.2 2.4 	SPT 5,26,25 Refusa			bands, grey mottled brown				Soil Vapour Probe (125 mmø) from depth 1.8 to 2 mbgl Well collapsed from
		_				Hole Terminated at 2.83 m				2.83mbgl

Disclaimer This bore log is intended for environmental not geotechnical purposes.

NON-CORE DRILL HOLE- GEOLOGICAL LOG BH07

Project Number: A101023.0436 Project Name: Melrose Park Public School Client: SINSW

Location: 110 Wharf Rd, Ermington NSW 2114

Start Date: 26/09/2023 Finish Date: 26/09/2023 Contractor Legion Drilling Excavtion Method Comaccho Geo 205 Mounting Track Mounted

Comme	nte							oggod by:	KE					
Comme	ints:					Logged by: KE Checked by: MM								
Drilling and Casing	Ground Water	Depth (m)	Samples and Field Tests	Graphic Log	Group Symbol	Material Description	Moisture Condition	Consistency Relative Density	Well Diagram	Additional Observations				
AD/T		0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 2.2 2.2 2.4 2.2 2.4 2.2 3.2 3.2 3.4 3.6 3.8 4	U-63		CL	FILL - Silty CLAY: low to medium plasticity, brown-grey, trace of angular gravel and organic root matter (top 200mm) Silty CLAY: low to medium plasticity, brown-grey, trace of angular gravel Extremely to Highly weathered SHALE: with some clay bands, grey mottled brown Hole Terminated at 4 m	w <pl< td=""><td></td><td>Bentonite Bentonite</td><td>Soil Vapour Probe (125 mmø) from depth 2.45 to 2.55 mbgl Well collapsed from 4.0 to 2.55 mgbl</td></pl<>		Bentonite Bentonite	Soil Vapour Probe (125 mmø) from depth 2.45 to 2.55 mbgl Well collapsed from 4.0 to 2.55 mgbl				
		_												

Disclaimer This bore log is intended for environmental not geotechnical purposes.

produced by ESlog.ESdat.net on 21 Nov 2023

Appendix C – Photographs

Photograph 1: Test pit TP1, facing south. Date 25/09/2023

Photograph 2: Test pit 1, observance of minor debris in excavated fill material.

Photograph 3: Test pit TP2, facing Northwest. Date: 25/09./023

Photograph 4: Test pit 3, representative of general lithology across the site. Soft, fine sandy dark brown silty clay (topsoil) overlaying natural -red/orange clay with red or orange mottles. Date: 25/09/2023

Photograph 5: Test pit 15, representative of topsoil lithology observed across the site. Date: 25/09/2023

Photograph 6: Test pit 13, facing south. Date: 25/09/2023

Photograph 7: Test pit 15 facing Northwest. Date: 25/09/2023

Photograph 8 : Test pit TP17. Standard gravimetric method used to screen for potential % w/w asbestos in soil and potential asbestos cement material PACM. No PACM encountered in any test pits or boreholes. Date: 25/09/2023.

Photograph 9: Sampling location SP1 showing evidence of overgrown sand pit. Date: 25/09/2023.

Photograph 10: Soil vapor well installed at location BH05. Soil vapour assessment conducted on 04/10/2023.

Appendix D – Equipment calibration certificate (PID and GFM)

UNIT 29, 756-758 BURWOOD HWY • FERNTREE GULLY • VIC 3156 • AUSTRALIA • PH: +61 3 9752 3782 • FAX: +61 3 9752 3783 EMAIL: <u>sales@anri.com.au</u> <u>www.anri.com.au</u>

Date: 21.7.23

1

Attn: Vera Kudin Active Environmental Solutions 2 Merchant Ave. Thomastown Vic. 3074

O/N - 1512

Calibration Certificate # 5375

Manufacture/Model	: Gas Data GFM436
S/N	: 13722
Gases Monitored	: CH4, 0-100%, CO2 0-100%, O2 0-25%, H2S, CO
Zero setting CH4/CO2/O2	: 0.0
Gas used	: N2
Cylinder No.	: BOC High Purity
Same anthing CUIA	: 60.0%
Span setting CH4 Gas used	
	: 60.0% CH4 in CO2
Cylinder No.	: 72927 Air Liquide (NATA)
60.0% CH4 in CO2 reads	: 60.0%
Spon satting CO2	: 40.0%
Span setting CO2 Gas used	: 40.0% CO2 in CH4
Cylinder No.	: 72927 Air Liquide (NATA)
40.0% CO2 in CH4 reads	: 39.9%
Span setting O2	: 20.9% (Air) Reads 20.9%
25ppm H2S reads	: 25ppm
479ppm CO reads	: 482ppm
+75ppin co reads	. +02ppm
Cell replaced	: -
Estimated Date of cell replacement	: Oxygen 21.7.24
L.	
Comments	: Calibration OK
Flow rate	: 550ml/min. OK
Atm. Pressure 1009mb	: 1010mb
Next Service/calibration Due	: 21.7.24
Stephen Hurst	

ANRI Instruments & Controls Pty Ltd

Calibration and Service Report - PID

	ADE Consulting Group (NSW) F	Manufacturer:	RAE	Serial #:	595-002222
Contact:	Michelle Ridley	Instrument:	MINIRAE LITE SN: 595-002222	Asset #:	PID 3
Address:	Unit 6	Model:	MINIRAE LITE	Part #:	059-A126-000
	7 Millennium Court Silverwater NSW 2128	Configuration:	VOC 10.6EV	Sold:	20.02.2017
	Sirei water 14544 2120	Wireless:	· 62 · 12	Last Cal:	03.03.2023
Phone:	1300796922	Network ID:		Job #:	152491
Fax:		Unit ID:		Cal Spec:	
Email:	michelle.ridley@ade.group	Details:		Order #:	PID 3

item	Test	Pass/Fail	Comments	Serial Number
Battery	NiCd, NiMH, Dry cell, Lilon	Р		
Charger	Power Supply	Р		
	Cradle, Travel Charger	Р		
Pump	Flow	Р	>450ml/min	
Filter	Filter, fitting, etc	x	Dirty, replaced	
Alarms	Audible, visual, vibration	Р		
Display	Operation	Р		
Switches	Operation	Р		
РСВ	Operation	Р		
Connectors	Condition	Р		
Firmware	Version	Р	V2.22A Fumigation	
Datalogger	Operation	Р		
Monitor Housing	Condition	Р	Cleaned	
Case	Condition / Type	-		
Sensors				
PID	Lamp	Р	Cleaned	
PID	Sensor	Р	Cleaned	
THP	Sensor	Р		

Cleaned lamp, lamp housing and sensor electrode Checked moisture sensitivity Checked flowrate and stall values Checked unit settings and PC configuration Unit serviced and calibrated.

www.aesolutions.com.au

service@aesolutions.com.au

Calibration and Service Report - PID

Company:	ADE Consulting Group (NSW) F	Manufacturer:	RAE	Serial #:	595-002222	
Contact:	Michelle Ridley	Instrument:	MINIRAE LITE SN: 595-002222	Asset #:	PID 3	
Address:	Unit 6	Model:	MINIRAE LITE	Part #:	059-A126-000	
	7 Millennium Court Silverwater NSW 2128	Configuration:	VOC 10.6EV	Sold:	20.02.2017	
	Silverwater NSVV 2126	Wireless:	-	Last Cal:	03.03.2023	
Phone:	1300796922	Network ID:	-	Job #:	152491	
Fax:		Unit ID:	-	Cal Spec:		
Email:	michelle.ridley@ade.group	Details:		Order #:	PID 3	

Calibration Certificate

Sensor	Туре	Serial No.	Span	Concentration	Traceability	CF	Rea	ding
			Gas		Lot #	· · ·	Zero	Span
Oxygen								
			-					
LEL								
PID	050-0000-004, 10.6EV 1/ 2 INCH LAMP	S023060055TC/1062R01 2710	Isobutylene	100ppm	WO371138-58		0	100.0
Battery	059-3051-000. MINIRAE 3000 LI-ION BATTERY	159TCW0532						
Toxic 1			20000000				-	
Toxic 2								
Toxic 3								
Toxic 4			terre and the second					
Toxic 5								
Toxic 6	PGM-7350							-

Calibrated/Repaired by: JERRY JI

Date: 21.07.2023

Next Due: 21.01.2024

service@aesolutions.com.au

www.aesolutions.com.au

Appendix E – Results & UCL Summary Table

				Inorganics		Organic					Metals									
			Moisture Content	pH 1:5 soil:water	Cation Exchange Capacity	тос %	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Iron	Naphthalene	Naphthalene (VOC)	Acenaphthylene	Acenaphthene	Fluorene
-			%	-	meq/100g	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) HILs Re	es A Soil						100	20	100	6,000	300	40	400	7,400						
NEPM 2013 Table 1A(3) Res A/	B Soil HSL for Vapour Intrusion,	Clay >=0m, <1m														3	3			
NEPM 2013 Table 1B(7) Manag	ement Limits in Res / Parkland,	Fine Soil																		
NEPM 2013 Table 1B(5) Site sp	ecific EIL - Urban Res & Public O _l	oen Space					100		730	90	1,100		40	220		170	170			
NEPM 2013 Table 1B(6) ESLs fo	r Urban Residential and Public C	pen Space, Fine Soil																		
			-																	
Field ID	Sample Type	Date																		
BH2_0.0-0.1	Soil - primary	04 Oct 2023	15	NT	NT	NT	14	<0.4	18	22	60	<0.1	7	140	NT	<0.1	<1	<0.1	<0.1	<0.1
BH02_1.5	Soil - primary	25 Sep 2023	13	NT	NT	NT	<4	<0.4	7	14	18	<0.1	<1	6	NT	<0.1	<1	<0.1	<0.1	<0.1
BH3_0.0-0.1	Soil - primary	04 Oct 2023	1.5	NT	NT	NT	<4	<0.4	11	4	6	<0.1	6	40	NT	<0.1	<1	<0.1	<0.1	<0.1
BH04_1.0	Soil - primary	25 Sep 2023	17	NT	NT	NT	11	<0.4	26	9	25	<0.1	2	9	NT	<0.1	<1	<0.1	<0.1	<0.1
BH5_0.0-0.1	Soil - primary	04 Oct 2023	26	NT	NT	NT	16	<0.4	21	30	57	<0.1	14	120	NT	<0.1	<1	<0.1	<0.1	<0.1
BH06_1.0	Soil - primary	25 Sep 2023	13	NT	NT	NT	12	<0.4	13	29	21	<0.1	1	11	NT	<0.1	<1	<0.1	<0.1	<0.1
BH7_0.0-0.1	Soil - primary	04 Oct 2023	28	NT	NT	NT	7	<0.4	18	23	46	<0.1	8	58	NT	<0.1	<1	<0.1	<0.1	<0.1
BH8_0.0-0.1	Soil - primary	04 Oct 2023	21	NT	NT	NT	8	<0.4	23	19	53	0.1	6	50	NT	<0.1	<1	<0.1	<0.1	<0.1
BH9_0.0-0.1	Soil - primary	04 Oct 2023	28	NT	NT	NT	7	<0.4	19	21	39	<0.1	6	40	NT	<0.1	<1	<0.1	<0.1	<0.1
BH09_1.0	Soil - primary	25 Sep 2023	16	NT	NT	NT	11	<0.4	15	28	33	<0.1	3	16	NT	<0.1	<1	<0.1	<0.1	<0.1
TP1_0.1-0.2_230925	Soil - primary	25 Sep 2023	14	NT	NT	NT	6	<0.4	16	35	53	<0.1	9	94	NT	<0.1	<1	<0.1	<0.1	<0.1
TP2_0.1-0.2_230925	Soil - primary	25 Sep 2023	17	NT	NT	NT	9	<0.4	21	28	440	0.2	10	180	NT	<0.1	<1	0.2	<0.1	<0.1
TP3_0.0-0.2_230925	Soil - primary	25 Sep 2023	22	NT	NT	NT	6	<0.4	18	17	37	<0.1	11	72	NT	<0.1	<1	0.1	<0.1	<0.1
TP4_0.0-0.2_230925	Soil - primary	25 Sep 2023	12	NT	NT	NT	11	<0.4	27	19	62	<0.1	5	91	NT	<0.1	<1	<0.1	<0.1	<0.1
TP5_0.0-0.2_230925	Soil - primary	25 Sep 2023	15	NT	NT	NT	11	<0.4	26	31	150	0.2	5	88	NT	<0.1	<1	<0.1	<0.1	<0.1
TP6_0.0-0.2_230925	Soil - primary	25 Sep 2023	16	NT	NT	NT	10	<0.4	26	13	46	<0.1	5	41	NT	<0.1	<1	<0.1	<0.1	<0.1
TP7_0.0-0.2_230925	Soil - primary	25 Sep 2023	14	NT	NT	NT	18	<0.4	30	31	110	<0.1	12	130	NT	<0.1	<1	<0.1	<0.1	<0.1
TP8_0.0-0.2_230925	Soil - primary	25 Sep 2023	17	NT	NT	NT	12	<0.4	27	32	69	<0.1	12	200	NT	<0.1	<1	<0.1	<0.1	<0.1
TP9_0.1-0.2_230925	Soil - primary	25 Sep 2023	22	NT	NT	NT	20	<0.4	34	35	46	<0.1	5	87	NT	<0.1	<1	<0.1	<0.1	<0.1
TP10_0.0-0.2_230925	Soil - primary	25 Sep 2023	22	NT	NT	NT	8	<0.4	22	24	84	0.1	7	36	NT	<0.1	<1	<0.1	<0.1	<0.1
TP11_0.0-0.2_230925	Soil - primary	25 Sep 2023	19	NT	NT	NT	8	<0.4	21	17	35	<0.1	5	16	NT	<0.1	<1	<0.1	<0.1	<0.1
TP11_0.3-0.4_230925	Soil - primary	25 Sep 2023	28	5.1	5.2	7,400	9	<0.4	24	33	23	<0.1	3	17	66,000	<0.1	<1	<0.1	<0.1	<0.1
TP12_0.0-0.1_230925	Soil - primary	25 Sep 2023	19	NT	NT	NT	7	<0.4	19	18	42	<0.1	6	36	NT	<0.1	<1	<0.1	<0.1	<0.1
TP13_0.1-0.2_230925	Soil - primary	25 Sep 2023	15	NT	NT	NT	8	<0.4	24	20	39	<0.1	5	150	NT	<0.1	<1	<0.1	<0.1	<0.1
TP14_0.0-0.2_230925	Soil - primary	25 Sep 2023	20	NT	NT	NT	10	<0.4	24	19	35	<0.1	5	20	NT	<0.1	<1	<0.1	<0.1	<0.1
TP15_0.0-0.2 _230925	Soil - primary	25 Sep 2023	23	NT	NT	NT	9	<0.4	20	25	35	<0.1	7	28	NT	<0.1	<1	<0.1	<0.1	<0.1
TP16_0.1-0.2_230925	Soil - primary	25 Sep 2023	20	NT	NT	NT	11	<0.4	24	41	100	0.2	7	140	NT	<0.1	<1	0.1	<0.1	<0.1
TP17_0.0-0.1_230925	Soil - primary	25 Sep 2023	15	NT	NT	NT	8	<0.4	20	24	31	<0.1	7	27	NT	<0.1	<1	<0.1	<0.1	<0.1
SP1	Soil - primary	25 Sep 2023	18	NT	NT	NT	4	<0.4	2	<1	2	<0.1	<1	5	NT	<0.1	<1	<0.1	<0.1	<0.1
BR1	duplicate Inter	25 Sep 2023	NT	NT	NT	NT	5.7	<0.4	16	24	48	<0.1	7.3	88	NT	<0.5	<0.5	<0.5	<0.5	<0.5
SR1	duplicate Intra	25 Sep 2023	14	NT	NT	NT	6	< 0.4	17	28	55	< 0.1	11	75	NT	<0.1	<1	< 0.1	<0.1	<0.1

tisti	

Number of Results	30	1	1	1	31	31	31	31	31	31	31	31	1	31	31	31	31	31
Number of Detects	30	1	1	1	29	0	31	30	31	5	29	31	1	0	0	3	0	0
Minimum Concentration	1.5	5.1	5.2	7,400	4	<0.4	2	<1	2	0.1	1	5	66,000	<0.1	<0.5	0.1	<0.1	<0.1
Maximum Concentration	28	5.1	5.2	7,400	20	<0.4	34	41	440	0.2	14	200	66,000	<0.5	<1	<0.5	<0.5	<0.5
Average Concentration *	18				9.2	0.2	20	23	61	0.068	6.4	68		0.056	0.49	0.065	0.056	0.056

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

2013, NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil

			1															1		
				1	1	1	P/	AH		1		1	1				1			
			Anthracene	Phenanthrene	byrene	luoranthene	Chrysene	3enzo(a) an thracene	3enzo(a) pyrene	3enzo(a)pyrene TEQ (LOR)	3enzo(b+j+k)fluoranth sne	3enzo(g,h,i)perylene	Dibenz(a, h) anthracen e	ndeno(1,2,3- ;,d)pyrene	3enzo(b+j)fluoranther a	3enzo(k)fluoranthene	AHs (Total)	l, 2, 4- :rimethylbenzene	l, 3, 5- trimethylbenzene	sopropylbenzene
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) HILs Res	A Soil				0, 0	0,0	0, 0	0,0	0, 0	3	0, 0	0, 0		0,0	0, 0		300		0, 0	
NEPM 2013 Table 1A(3) Res A/B		n. Clav >=0m. <1m																		
NEPM 2013 Table 1B(7) Manager																				
NEPM 2013 Table 1B(5) Site spec																				
NEPM 2013 Table 1B(6) ESLs for U									0.7											
			_						0.7											
Field ID	Sample Type	Date																		
BH2_0.0-0.1	Soil - primary	04 Oct 2023	< 0.1	<0.1	0.1	0.2	<0.1	<0.1	0.06	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	0.4	NT	NT	NT
BH02_1.5	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	<0.05	NT	NT	NT
BH3_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	< 0.05	NT	NT	NT
BH04_1.0	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	< 0.05	NT	NT	NT
BH5_0.0-0.1	Soil - primary	04 Oct 2023	0.1	0.6	1	1.1	0.4	0.4	0.4	0.7	0.7	0.2	<0.1	0.2	NT	NT	5.1	NT	NT	NT
BH06_1.0	Soil - primary	25 Sep 2023	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	<0.05	NT	NT	NT
BH7_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	0.1	0.2	<0.1	<0.1	0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	0.3	NT	NT	NT
BH8_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	0.1	NT	NT	NT
BH9_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	< 0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	0.1	NT	NT	NT
BH09_1.0	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	<0.05	NT	NT	NT
TP1 0.1-0.2 230925	Soil - primary	25 Sep 2023	<0.1	0.3	0.6	0.1	0.3	0.3	0.5	0.7	0.9	0.3	<0.1	0.5	NT	NT	4.3	<1	<1	<1
TP2_0.1-0.2_230925	Soil - primary	25 Sep 2023	0.1	0.9	1.8	2.0	0.8	1.0	1.4	2.0	2.2	0.6	0.2	1	NT	NT	12	NT	NT	NT
TP3_0.0-0.2_230925	Soil - primary	25 Sep 2023	0.2	0.9	0.8	1	0.8	0.4	0.5	0.7	0.8	0.0	<0.1	0.3	NT	NT	5.2	NT	NT	NT
TP4_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	0.8	0.2	<0.1	<0.1	0.3	<0.5	0.8	<0.1	<0.1	0.3	NT	NT	0.69	NT	NT	NT
TP5 0.0-0.2 230925		25 Sep 2023	<0.1	<0.1	0.1	0.2	<0.1	<0.1	0.1	< 0.5	0.2	<0.1	<0.1	0.1	NT	NT	0.89	NT	NT	NT
TP5_0.0-0.2_230925	Soil - primary Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	< 0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	0.74	NT	NT	NT
TP7_0.0-0.2_230925		25 Sep 2023	<0.1	0.1	0.1	0.1	0.1	<0.1	0.07	<0.5	0.3	<0.1	<0.1	0.1	NT	NT	1.1	<1	<1	<1
TP8 0.0-0.2 230925	Soil - primary Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	< 0.05	NT	NT	NT
TP9_0.1-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	0.1	0.1	<0.1	<0.1	0.1	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	0.4	NT	NT	NT
TP10 0.0-0.2 230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	0.05	NT	NT	NT
TP11 0.0-0.2 230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	<0.05	<1	<1	<1
TP11_0.3-0.4_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	< 0.05	NT	NT	NT
TP12 0.0-0.1 230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	< 0.05	NT	NT	NT
TP13 0.1-0.2 230925	Soil - primary	25 Sep 2023	<0.1	<0.1	0.2	0.2	0.1	<0.1	0.1	<0.5	0.3	<0.1	<0.1	0.1	NT	NT	1.1	NT	NT	NT
TP14 0.0-0.2 230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	< 0.05	NT	NT	NT
TP15 0.0-0.2 230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	< 0.05	NT	NT	NT
TP16 0.1-0.2 230925	Soil - primary	25 Sep 2023	0.2	0.8	1.1	1.2	0.4	0.5	0.55	0.9	1	0.3	<0.1	0.4	NT	NT	6.8	NT	NT	NT
TP17 0.0-0.1 230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	< 0.05	NT	NT	NT
SP1	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.5	<0.2	<0.1	<0.1	<0.1	NT	NT	< 0.05	NT	NT	NT
BR1	duplicate Inter	25 Sep 2023	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	< 0.05	1.2	<0.2 NT	<0.1	<0.1	<0.1	<0.5	<0.5	0.6	NT	NT	NT
SR1	duplicate Inter	25 Sep 2023	<0.5	0.3	0.6	0.6	0.3	0.3	0.3	0.5	0.5	0.2	<0.5	0.1	<0.5 NT	<0.5 NT	3.2	NT	NT	NT
5N1		123 Sep 2023	<u.1< th=""><th>0.5</th><th>0.0</th><th>0.0</th><th>0.5</th><th>0.5</th><th>0.5</th><th>0.5</th><th>0.5</th><th>0.2</th><th>NU.1</th><th>0.1</th><th></th><th></th><th>3.2</th><th></th><th>INI</th><th></th></u.1<>	0.5	0.0	0.0	0.5	0.5	0.5	0.5	0.5	0.2	NU.1	0.1			3.2		INI	
Statistics																				
Number of Results			31	31	31	31	31	31	31	31	30	31	31	31	1	1	30	3	3	3
Number of Detects			4	7	14	15	8	6	15	7	10	6	1	10	0	0	17	0	0	0

												· · ·	
Number of Detects	4	7	14	15	8	6	15	7	10	6	1	10	0
Minimum Concentration	0.1	0.1	0.1	0.1	0.1	<0.1	0.05	0.5	0.2	<0.1	<0.1	0.1	<0.5
Maximum Concentration	<0.5	0.9	1.8	2	0.8	1	1.4	2	2.2	0.6	<0.5	1	<0.5
Average Concentration *	0.069	0.16	0.27	0.29	0.13	0.14	0.16	0.41	0.3	0.1	0.061	0.13	
												-	

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

2013, NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil

1	1	30	3	3	3
0	0	17	0	0	0
D.5	<0.5	0.05	<1	<1	<1
0.5	<0.5	12	<1	<1	<1
		1.4	0.5	0.5	0.5

				MAH							BTEX							PC	CBs
					0														
			n-butylbenzene	n-propylbenzene	p-isopropyltoluene	sec-butylbenzene	Styrene	tert-butylbenzene	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248
_			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) HILs Re	es A Soil																		
NEPM 2013 Table 1A(3) Res A/	B Soil HSL for Vapour Intrusion, C	lay >=0m, <1m							0.7	480	NL			110					
NEPM 2013 Table 1B(7) Manag	ement Limits in Res / Parkland, F	ine Soil																	
NEPM 2013 Table 1B(5) Site sp	ecific EIL - Urban Res & Public Op	en Space																	
NEPM 2013 Table 1B(6) ESLs fo	r Urban Residential and Public Op	pen Space, Fine Soil							65	105	125			45					
		- .	-																
Field ID	Sample Type	Date	NT	NT	NT	NT	NT	NT	-0.2	-0.5	- 4		-1	-4	10.1	-0.1	-0.1	-0.1	-0.1
BH2_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	<0.1	<0.1
BH02_1.5	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	<0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	< 0.1	< 0.1
BH3_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	< 0.1	<0.1
BH04_1.0 BH5 0.0-0.1	Soil - primary	25 Sep 2023	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	<0.2	<0.5 <0.5	<1	<2	<1 <1	<1 <1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	< 0.1
BH06 1.0	Soil - primary	04 Oct 2023 25 Sep 2023	NT				NT	NT	<0.2		<1					<0.1 <0.1	<0.1		< 0.1
BH7 0.0-0.1	Soil - primary	04 Oct 2023	NT	NT NT	NT NT	NT NT	NT	NT		<0.5 <0.5	<1	<2	<1	<1	<0.1 <0.1		<0.1	<0.1	<0.1 <0.1
BH7_0.0-0.1 BH8 0.0-0.1	Soil - primary Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	<0.2	<0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1
											<1		<1	<1		<0.1			
BH9_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	<0.1	<0.1
BH09_1.0	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	< 0.1	<0.1	<0.1	<0.1	< 0.1
TP1_0.1-0.2_230925	Soil - primary	25 Sep 2023	<1	<1	<1	<1	<1	<1	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	< 0.1	<0.1
TP2_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	< 0.1	<0.1	<0.1	<0.1	< 0.1
TP3_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	< 0.1	<0.1
TP4_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	< 0.1	<0.1	<0.1
TP5_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	< 0.1	<0.1	<0.1
TP6_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	< 0.1	<0.1	<0.1
TP7_0.0-0.2_230925	Soil - primary	25 Sep 2023	<1	<1	<1	<1	<1	<1	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	< 0.1	<0.1
TP8_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	<0.1	< 0.1
TP9_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	<0.1	<0.1
TP10_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	< 0.1	<0.1
TP11_0.0-0.2_230925	Soil - primary	25 Sep 2023	<1	<1	<1	<1	<1	<1	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	< 0.1	< 0.1
TP11_0.3-0.4_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	<0.1	< 0.1
TP12_0.0-0.1_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	<0.1	<0.1
TP13_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	< 0.1	< 0.1
TP14_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	< 0.1	< 0.1
TP15_0.0-0.2 _230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	<0.1	< 0.1
TP16_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	<0.1	< 0.1
TP17_0.0-0.1_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	<0.1	< 0.1
SP1	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	<0.5	<1	<2	<1	<1	<0.1	<0.1	<0.1	<0.1	<0.1
BR1	duplicate Inter	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<1	<1	<1	<1	<1
SR1	duplicate Intra	25 Sep 2023	NT	NT	NT	NT	NT	NT	<0.2	< 0.5	<1	<2	<1	<1	<0.1	< 0.1	<0.1	<0.1	<0.1

tisti	

Number of Results	3	3	3	3	3	3	31	31	31	31	31	31	31	31	31	31	31
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<1	<1	<1	<1	<1	<1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	<1	<1	<1	<1	<1	<1	<0.2	<0.5	<1	<2	<1	<1	<1	<1	<1	<1	<1
Average Concentration *	0.5	0.5	0.5	0.5	0.5	0.5	0.098	0.24	0.49	0.97	0.49	0.49	0.065	0.065	0.065	0.065	0.065

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

2013, NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil

										Halogenate	ed Benzenes								TF	PH
								e	e	<u>و</u>						(SG)	(ŋ	(sg)		
			Arochlor 1254	Arochlor 1260	PCBs (Sum of total)	1,2,3- trichlorobenzene	1,2,4- trichlorobenzene	1,2-dichlorobenzen	1, 3-dichlorobenzen	1,4-dichlorobenzen	2-chlorotoluene	4-chlorotoluene	Bromobenzene	Chlorobenzene	Hexachlorobenzene	C10-C14 Fraction (S	C15-C28 Fraction (SG)	C29-C36 Fraction (S	C6-C9 Fraction	C10-C14 Fraction
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) HILs R	es A Soil				1										10					
NEPM 2013 Table 1A(3) Res A/	•	· · ·																		
NEPM 2013 Table 1B(7) Manag																				
NEPM 2013 Table 1B(5) Site sp																				
NEPM 2013 Table 1B(6) ESLs fo	r Urban Residential and Public	Open Space, Fine Soil																		
Field ID	Sample Type	Date																		
BH2_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	< 0.1	NT	NT	NT	<25	88
BH02_1.5	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
BH3_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
BH04_1.0	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
BH5_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	< 0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
BH06_1.0	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
BH7_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
BH8_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
BH9_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
BH09_1.0	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP1_0.1-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	< 0.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.1	NT	NT	NT	<25	<50
TP2_0.1-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	< 0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP3_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP4_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP5_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP6_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP7_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.1	NT	NT	NT	<25	63
TP8_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP9_0.1-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP10_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP11_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.1	NT	NT	NT	<25	<50
TP11_0.3-0.4_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP12_0.0-0.1_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP13_0.1-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP14_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP15_0.0-0.2 _230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP16_0.1-0.2_230925	Soil - primary	25 Sep 2023	<0.1	< 0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
TP17_0.0-0.1_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
SP1	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
BR1	duplicate Inter	25 Sep 2023	<1	<1	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	< 0.5	NT	NT	NT	<20	<20
SR1	duplicate Intra	25 Sep 2023	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NT	NT	<25	<50
Statistics																				
Number of Results				1	1	1		1					1				1	1		

Number of Results	31	31	31	3	3	3	3	3	3	3	3	3	31	1	1	1	31	31
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Minimum Concentration	<0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.1	<50	<100	<100	<20	<20
Maximum Concentration	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<50	<100	<100	<25	88
Average Concentration *	0.065	0.065	0.065	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.056				12	28

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

2013, NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil

									TRH				TRH -	(Silica Gel Cle	eanup)			_	
			C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)	C6-C10 Fraction (F1)	C6-C10 (F1 minus BTEX)	>C10-C16 Fraction (F2)	>C10-C16 Fraction (F2 minus Naphthalene)	>C16-C34 Fraction (F3)	>C34-C40 Fraction (F4)	>C10-C40 Fraction (Sum)	>C10-C16 Fraction (SG)	>C16-C34 Fraction (SG)	>C34-C40 Fraction (SG)	Vinyl chloride	cis-1,2-dichloroethene	1, 1-dichloroethene	trans-1,2- dichlor oethene
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) HILs Re																			
	B Soil HSL for Vapour Intrusion	-					50		280										
	ement Limits in Res / Parkland					800		1,000		3,500	10,000								-
	ecific EIL - Urban Res & Public (100		120	120	1 200	F (00								
NEPM 2013 Table 1B(6) ESLs for	or Orban Residential and Public	Open Space, Fine Soli				180		120	120	1,300	5,600								
Field ID	Sample Type	Date																	
BH2_0.0-0.1	Soil - primary	04 Oct 2023	240	370	690	<25	<25	74	74	420	200	690	NT	NT	NT	NT	NT	NT	NT
BH02_1.5	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
BH3_0.0-0.1	Soil - primary	04 Oct 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
BH04_1.0	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
BH5_0.0-0.1	Soil - primary	04 Oct 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
BH06_1.0	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
BH7_0.0-0.1	Soil - primary	04 Oct 2023	<100	100	100	<25	<25	<50	<50	100	<100	100	NT	NT	NT	NT	NT	NT	NT
BH8_0.0-0.1	Soil - primary	04 Oct 2023	<100	160	160	<25	<25	<50	<50	110	140	260	NT	NT	NT	NT	NT	NT	NT
ВН9_0.0-0.1	Soil - primary	04 Oct 2023	<100	<100	<50	<25	<25	<50	<50	110	<100	110	NT	NT	NT	NT	NT	NT	NT
BH09_1.0	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
TP1_0.1-0.2_230925	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	<1	<1	<1	<1
TP2_0.1-0.2_230925	Soil - primary	25 Sep 2023	<100	190	190	<25	<25	<50	<50	200	190	380	NT	NT	NT	NT	NT	NT	NT
TP3_0.0-0.2_230925	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
TP4_0.0-0.2_230925	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
TP5_0.0-0.2_230925	Soil - primary	25 Sep 2023	<100	150	150	<25	<25	<50	<50	150	160	320	NT	NT	NT	NT	NT	NT	NT
TP6_0.0-0.2_230925	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
TP7_0.0-0.2_230925	Soil - primary	25 Sep 2023	120	140	320	<25	<25	57	57	190	100	350	NT	NT	NT	<1	<1	<1	<1
TP8_0.0-0.2_230925	Soil - primary	25 Sep 2023	<100	130	130	<25	<25	<50	<50	160	<100	160	NT	NT	NT	NT	NT	NT	NT
TP9_0.1-0.2_230925	Soil - primary	25 Sep 2023	<100 <100	100	100	<25 <25	<25 <25	<50 <50	<50 <50	120 <100	<100 <100	120 <50	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
TP10_0.0-0.2_230925 TP11 0.0-0.2 230925	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	<1	<1	<1	<1
TP11_0.3-0.4_230925	Soil - primary Soil - primary	25 Sep 2023 25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
TP11_0.3-0.4_230923		25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
TP12_0.0-0.1_230925	Soil - primary Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
TP13_0.1-0.2_230925	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
FP15_0.0-0.2_230925	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
IP15_0.0-0.2_230925	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
TP17_0.0-0.1_230925	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
SP1	Soil - primary	25 Sep 2023	<100	<100	<50	<25	<25	<50	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	NT
BR1	duplicate Inter	25 Sep 2023	74	210	284	<20	<23	<50	<50	210	270	480	NT	NT	NT	NT	NT	NT	NT
SR1	duplicate Intra	25 Sep 2023	<100	120	120	<20	<20	<50	<50	100	130	230	NT	NT	NT	NT	NT	NT	NT
	auphone men	120 000 2020	(100	-40		<u> </u>	123	100	-50	100	100	230			1	IL	1	1	<u> </u>
Statistics						u					1				1				
Number of Recults																			

Number of Results	31	31	31	31	31	31	31	31	31	31	1	1	1	3	3	3	3
Number of Detects	3	10	10	0	0	2	2	11	7	11	0	0	0	0	0	0	0
Minimum Concentration	74	100	<50	<20	<20	<50	<50	100	100	<50	<50	<100	<100	<1	<1	<1	<1
Maximum Concentration	240	370	690	<25	<25	74	74	420	270	690	<50	<100	<100	<1	<1	<1	<1
Average Concentration *	59	88	89	12	12	28	28	93	77	119				0.5	0.5	0.5	0.5

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

2013, NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil

													Chlorinated H	lydrocarbons						
					ane		ne	ne	de			he			e			e	e	e
			,2-dichloroethane	chloroform	romochloromethan	richloroethene	.1,1-trichloroethane	.1,2-trichloroethane	arbon tetrachloride	etrachloroethene	1,1,2,2- tetrachloroethane	exachlorobutadie	,1,1,2- etrachloroethane	,1-dichloroethane	.1-dichloropropene	1,2,3- trichloropropane	l,2-dibromo-3- chloropropane	,2-dichloropropan	,3-dichloropropan	,2-dichloropropan
			r mg/kg	mg/kg	mg/kg	re mg/kg	ri mg/kg	ri mg/kg	mg/kg	r mg/kg	ਜਾੜ mg/kg	⊥ mg/kg	ਜ ਝ mg/kg	ri mg/kg	ri mg/kg	ਜ ਸ mg/kg	ਜ ਹ mg/kg	ri mg/kg	ri mg/kg	ng/kg
NEPM 2013 Table 1A(1) HILs Re	os A Soil		116/16	116/16	116/16	116/16	116/16	116/16	116/16	116/16	116/16	1116/16	116/16	116/16	116/16	116/16	116/16	116/16	116/16	116/16
NEPM 2013 Table 1A(3) Res A/E		Clav >=0m <1m																		
NEPM 2013 Table 1B(7) Manage	•	•																		
NEPM 2013 Table 1B(5) Site spe																				
NEPM 2013 Table 1B(6) ESLs for		· ·																		
Field ID	Sample Type	Date																		
BH2_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH02_1.5	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
 ВН3_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH04_1.0	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH5_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH06_1.0	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH7_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH8_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH9_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH09_1.0	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP1_0.1-0.2_230925	Soil - primary	25 Sep 2023	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TP2_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP3_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP5_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP6_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP7_0.0-0.2_230925	Soil - primary	25 Sep 2023	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TP8_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP9_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP10_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP11_0.0-0.2_230925	Soil - primary	25 Sep 2023	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
TP11_0.3-0.4_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP12_0.0-0.1_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP13_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP14_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP15_0.0-0.2 _230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP16_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP17_0.0-0.1_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
SP1	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BR1	duplicate Inter	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
SR1	duplicate Intra	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Statistics																				

Statistics	

Number of Results	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Maximum Concentration	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Average Concentration *	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

2013, NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil

NEPM 2013 Table 1A(1) HILs R NEPM 2013 Table 1A(3) Res A/	es A Soil B Soil HSL for Vapour Intrusion, C	Clay >=0m, <1m	Bromodichlorometha me ^{//kg}	E Jojouroja mg/kg	mg/gm bay/gm ne	Chloroethane mg/kg	Chloromethane mg/kg	dichloropropene	Dibromomethane	gu trans-1, 3- 84/6 dichloropropene	Log mg/kg	atinophos methyl	ag Bolstar (Sulprofos) ag	Bromophos-ethyl mg/gg	Chlorfenvinphos mg//ga	Chlorpyrifos mg/kg 160	gay/ Chlorpyrifos-methyl	souther Court mg/kg	O-uotauno Mg/kg	S-uota Demetou mg/kg
NEPM 2013 Table 1B(7) Manag	gement Limits in Res / Parkland, F	Fine Soil																		
	ecific EIL - Urban Res & Public Op																			
NEPM 2013 Table 1B(6) ESLs fo	or Urban Residential and Public O	pen Space, Fine Soil																		
Field ID	Sample Type	Date										.0.4	. NT	10.4	N.T.	.0.4	-0.4	10.4	N.T.	
BH2_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	< 0.1	NT	<0.1	<0.1	< 0.1	NT	NT
BH02_1.5	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	< 0.1	NT	<0.1	<0.1	< 0.1	NT	NT
BH3_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	< 0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH04_1.0	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	< 0.1	NT	<0.1	< 0.1	< 0.1	NT	NT
BH5_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	< 0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH06_1.0	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH7_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH8_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	< 0.1	NT	NT
BH9_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	< 0.1	NT	NT
BH09_1.0	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	< 0.1	NT	<0.1	<0.1	< 0.1	NT	NT
TP1_0.1-0.2_230925	Soil - primary	25 Sep 2023	<1	<1	<1	<1	<1	<1	<1	<1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP2_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	< 0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP3_0.0-0.2_230925	Soil - primary	25 Sep 2023	_	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP4_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	< 0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP5_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	< 0.1	NT	<0.1	NT	<0.1	<0.1 <0.1	<0.1	NT	NT
TP6_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	< 0.1	NT	<0.1	NT	<0.1		<0.1	NT	NT
TP7_0.0-0.2_230925	Soil - primary	25 Sep 2023	<1 NT	<1 NT	<1 NT	<1 NT	<1 NT	<1 NT	<1 NT	<1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP8_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT		NT		NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP9_0.1-0.2_230925 TP10_0.0-0.2_230925	Soil - primary Soil - primary	25 Sep 2023 25 Sep 2023	NT	NT	NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT	<0.1	NT NT	<0.1	NT NT	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	NT NT	NT NT
TP10_0.0-0.2_230925		25 Sep 2023	<1	<1	<1	<1	<1	<1		<1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP11_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	<1 NT	NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
	Soil - primary		NT	NT	NT	NT	NT		NT		1		NT	<0.1		<0.1	<0.1	<0.1	NT	NT
TP12_0.0-0.1_230925 TP13_0.1-0.2_230925	Soil - primary	25 Sep 2023 25 Sep 2023	NT	NT	NT	NT	NT	NT NT	NT	NT NT	NT NT	<0.1	NT	<0.1	NT NT	<0.1	<0.1	<0.1	NT	NT
TP15_0.1-0.2_230925	Soil - primary Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP14_0.0-0.2_230925		·	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP15_0.0-0.2 _230925	Soil - primary	25 Sep 2023 25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP16_0.1-0.2_230925	Soil - primary Soil - primary	25 Sep 2023 25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
		·	-																	
SP1 BR1	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
BR1 SR1	duplicate Inter	25 Sep 2023	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	<0.5 NT	<0.5 <0.1	<0.5	NT <0.1	<0.5 NT	<0.5 <0.1	<0.5 <0.1	<5 <0.1	<0.5 NT	<0.5 NT
511	duplicate Intra	25 Sep 2023	IN I									<u.1< td=""><td></td><td><u.1< td=""><td></td><td><0.1</td><td><u.1< td=""><td><u.1< td=""><td>IN I</td><td></td></u.1<></td></u.1<></td></u.1<></td></u.1<>		<u.1< td=""><td></td><td><0.1</td><td><u.1< td=""><td><u.1< td=""><td>IN I</td><td></td></u.1<></td></u.1<></td></u.1<>		<0.1	<u.1< td=""><td><u.1< td=""><td>IN I</td><td></td></u.1<></td></u.1<>	<u.1< td=""><td>IN I</td><td></td></u.1<>	IN I	
Statistics					-						u			-	1					
IN Lunch an of Desults				1 2	1 2			1 2				1 34		1 20		1 34	. 34	1 34		

Number of Results	3	3	3	3	3	3	3	3	1	31	1	30	1	31	31	31	1	1
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.5	<0.5
Maximum Concentration	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.5	<5	<0.5	<0.5
Average Concentration *	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.056		0.05		0.056	0.056	0.13		

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

2013, NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil

										Organop	hosphorous	Pesticides								
				s	ate				sor	ion	ulfothion					hion	arathion	os (Phosdrin)	tophos	(Dibrom)
			Diazinon	Dichlorvo	Dimethoa	Disulfotor	Ethion	Ethoprop	Fenamiphos	Fenitrothion	Fensulfot	Fenthion	EPN	Malathion	Merphos	Methidathio	Methyl pa	Mevinph	Monocro	Naled (Di
r			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) HILs R	es A Soil																			
	/B Soil HSL for Vapour Intrusion																			
	gement Limits in Res / Parkland																			
	ecific EIL - Urban Res & Public (
NEPM 2013 Table 1B(6) ESLs fo	or Urban Residential and Public	Open Space, Fine Soil																		
Field ID	Sample Type	Date																		
BH2_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH02_1.5	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
ВН3_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH04_1.0	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH5_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH06_1.0	Soil - primary	25 Sep 2023	<0.1	< 0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH7_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH8_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH9_0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
BH09_1.0	Soil - primary	25 Sep 2023	<0.1	< 0.1	<0.1	<0.1	<0.1	NT	< 0.1	<0.1	NT	< 0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP1_0.1-0.2_230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	< 0.1	NT	<0.1	NT	<0.1	<0.1	< 0.1	NT	NT
TP2_0.1-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP3_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	< 0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP4_0.0-0.2_230925 TP5 0.0-0.2 230925	Soil - primary	25 Sep 2023	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	NT NT	<0.1 <0.1	<0.1 <0.1	NT NT	<0.1	NT NT	<0.1 <0.1	NT NT	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	NT NT	NT NT
TP5_0.0-0.2_230925	Soil - primary	25 Sep 2023 25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT NT	<0.1	NT	<0.1	NT NT	<0.1	<0.1	<0.1	NT	NT
TP7_0.0-0.2_230925	Soil - primary Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP7_0.0-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP9_0.1-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP10 0.0-0.2 230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP11 0.0-0.2 230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP11 0.3-0.4 230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP12 0.0-0.1 230925	Soil - primary	25 Sep 2023	<0.1	< 0.1	<0.1	<0.1	<0.1	NT	< 0.1	< 0.1	NT	< 0.1	NT	<0.1	NT	<0.1	<0.1	< 0.1	NT	NT
TP13 0.1-0.2 230925	Soil - primary	25 Sep 2023	<0.1	< 0.1	< 0.1	<0.1	<0.1	NT	< 0.1	<0.1	NT	< 0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP14 0.0-0.2 230925	Soil - primary	25 Sep 2023	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	NT	< 0.1	<0.1	NT	< 0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP15_0.0-0.2_230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	NT	< 0.1	< 0.1	NT	< 0.1	NT	< 0.1	NT	<0.1	<0.1	<0.1	NT	NT
TP16_0.1-0.2_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	< 0.1	< 0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
 TP17_0.0-0.1_230925	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	< 0.1	< 0.1	NT	< 0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
 SP1	Soil - primary	25 Sep 2023	< 0.1	< 0.1	< 0.1	<0.1	<0.1	NT	< 0.1	< 0.1	NT	< 0.1	NT	< 0.1	NT	<0.1	< 0.1	< 0.1	NT	NT
BR1	duplicate Inter	25 Sep 2023	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NT	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NT	< 0.5	< 0.5	<5	<0.5
SR1	duplicate Intra	25 Sep 2023	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT	NT
Statistics			-			-	-				-			-		-				
			1													1		1		

Number of Results	31	31	31	31	31	1	30	31	1	31	1	31	1	30	31	31	1	1
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<5	<0.5
Maximum Concentration	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<5	<0.5
Average Concentration *	0.056	0.056	0.056	0.056	0.056		0.05	0.056		0.056		0.056		0.05	0.056	0.056		

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

2013, NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil

			Omethoate	Parathion	Phorate	Pyrazophos	Ronnel	Terbufos	Phosalone	Trichloronate	Tetrachlorvinphos	Organochlorine pesticides EPAVic	Other organochlorine pesticides EPAVic	4,4-DDE	a-BHC	Aldrin	Aldrin + Dieldrin	р-внс	Chlordane	Chlordane (cis)
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	mg/kg
NEPM 2013 Table 1A(1) HILs R	es A Soil																6		50,000	
	B Soil HSL for Vapour Intrusion																			
	gement Limits in Res / Parkland	-																		
	pecific EIL - Urban Res & Public (L
NEPM 2013 Table 1B(6) ESLs fo	or Urban Residential and Public	: Open Space, Fine Soil																		
Field ID	Sample Type	Date																		
BH2_0.0-0.1	Soil - primary	04 Oct 2023	NT	< 0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	< 0.1	<0.1	NT	<0.1	NT	<0.1
BH02_1.5	Soil - primary	25 Sep 2023	NT	<0.1	< 0.1	NT	<0.1	NT	< 0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
BH3_0.0-0.1	Soil - primary	04 Oct 2023	NT	<0.1	< 0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
BH04_1.0	Soil - primary	25 Sep 2023	NT	<0.1	< 0.1	NT	<0.1	NT	< 0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
BH5_0.0-0.1	Soil - primary	04 Oct 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
BH06_1.0	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
ВН7_0.0-0.1	Soil - primary	04 Oct 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
BH8_0.0-0.1	Soil - primary	04 Oct 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
ВН9_0.0-0.1	Soil - primary	04 Oct 2023	NT	<0.1	< 0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
BH09_1.0	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP1_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	< 0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP2_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	< 0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP3_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP4_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP5_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP6_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP7_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP8_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP9_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP10_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP11_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP11_0.3-0.4_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
TP12_0.0-0.1_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	< 0.1	NT	NT	NT	NT	<0.1	< 0.1	<0.1	NT	<0.1	NT	<0.1
TP13_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	< 0.1
TP14_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	< 0.1
TP15_0.0-0.2 _230925	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	< 0.1
TP16_0.1-0.2_230925 TP17 0.0-0.1 230925	Soil - primary	25 Sep 2023 25 Sep 2023	NI	<0.1	<0.1	NT NT	<0.1	NT NT	<0.1 <0.1	NT NT	NT NT	NT NT	NT NT	<0.1 <0.1	<0.1	<0.1 <0.1	NT NT	<0.1 <0.1	NT NT	<0.1
	Soil - primary	·	-		-															
SP1	Soil - primary	25 Sep 2023	NT	<0.1	<0.1	NT 10.5	<0.1	NT	<0.1	NT	NT 10.5	NT	NT	<0.1	<0.1	<0.1	NT IO F	<0.1	NT	<0.1
BR1	duplicate Inter	25 Sep 2023	<5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	NT	<0.5	<0.5	<1 NT	<1	< 0.5	<0.5	<0.5	<0.5	< 0.5	<1,000	NT
SR1	duplicate Intra	25 Sep 2023	NT	<0.1	<0.1	NT	<0.1	NT	<0.1	NT	NT	NT	NT	<0.1	<0.1	<0.1	NT	<0.1	NT	<0.1
Statistics																				
			1																	

Number of Results	1	31	31	1	31	1	30	1	1	1	1	31	31	31	1	31	1	30
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<5	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.5	<0.5	<1	<1	<0.1	<0.1	<0.1	<0.5	<0.1	<1,000	<0.1
Maximum Concentration	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<1,000	<0.1
Average Concentration *		0.056	0.056		0.056		0.05					0.056	0.056	0.056		0.056		0.05

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

2013, NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil

						Organ	ochlorine Pes	ticides												
											۵									
			Chlordane (trans)	d-BHC	aa	Таа	DDT+DDE+DDD	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Methoxychlor	Mirex	Toxaphene
i			mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	ug/kg	mg/kg	mg/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) HILs Re							240,000					10,000				6		300	10	20
NEPM 2013 Table 1A(3) Res A/	-																			
NEPM 2013 Table 1B(7) Manag																				
NEPM 2013 Table 1B(5) Site sp						180,000														
NEPM 2013 Table 1B(6) ESLs fo	or Urban Residential and Public	Open Space, Fine Soil																		
Field ID	Sample Type	Date																		
BH2 0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	< 0.1	< 0.1	NT
BH02_1.5	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	<0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
BH3 0.0-0.1	Soil - primary	04 Oct 2023	<0.1	<0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	<0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
BH04 1.0	Soil - primary	25 Sep 2023	< 0.1	<0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	< 0.1	<0.1	NT
BH5 0.0-0.1	Soil - primary	04 Oct 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
BH06 1.0	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	< 0.1	< 0.1	< 0.1	<100	< 0.1	NT	<100	< 0.1	< 0.1	< 0.1	<0.1	NT
	Soil - primary	04 Oct 2023	< 0.1	< 0.1	< 0.1	<100	<100	<100	< 0.1	< 0.1	< 0.1	<100	<0.1	NT	<100	<0.1	< 0.1	< 0.1	<0.1	NT
	Soil - primary	04 Oct 2023	< 0.1	< 0.1	< 0.1	<100	<100	<100	< 0.1	< 0.1	< 0.1	<100	< 0.1	NT	<100	<0.1	< 0.1	< 0.1	<0.1	NT
BH9 0.0-0.1	Soil - primary	04 Oct 2023	<0.1	< 0.1	<0.1	<100	<100	<100	< 0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
BH09 1.0	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	< 0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
TP1_0.1-0.2_230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	< 0.1	<0.1	<0.1	<100	<0.1	NT	<100	<0.1	< 0.1	<0.1	<0.1	NT
TP2_0.1-0.2_230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	< 0.1	<0.1	<0.1	NT
TP3 0.0-0.2 230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	< 0.1	<0.1	<0.1	<100	<0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
TP4 0.0-0.2 230925	Soil - primary	25 Sep 2023	<0.1	< 0.1	<0.1	<100	<100	<100	< 0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	<0.1	< 0.1	NT
TP5 0.0-0.2 230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
TP6 0.0-0.2 230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	<0.1	NT	<100	<0.1	< 0.1	<0.1	<0.1	NT
TP7_0.0-0.2_230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
TP8 0.0-0.2 230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
TP9 0.1-0.2 230925	Soil - primary	25 Sep 2023	<0.1	< 0.1	<0.1	<100	<100	<100	< 0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	< 0.1	<0.1	NT
TP10 0.0-0.2 230925	Soil - primary	25 Sep 2023	< 0.1	<0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	< 0.1	<0.1	NT
TP11_0.0-0.2_230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	< 0.1	< 0.1	< 0.1	<100	< 0.1	NT	<100	<0.1	< 0.1	<0.1	<0.1	NT
TP11 0.3-0.4 230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	<0.1	< 0.1	< 0.1	<100	<0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
TP12 0.0-0.1 230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	<0.1	< 0.1	< 0.1	<100	<0.1	NT	<100	<0.1	< 0.1	< 0.1	<0.1	NT
TP13 0.1-0.2 230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	< 0.1	< 0.1	< 0.1	<100	<0.1	NT	<100	<0.1	<0.1	< 0.1	<0.1	NT
TP14 0.0-0.2 230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	<0.1	< 0.1	<0.1	<100	<0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
 TP15_0.0-0.2 _230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	< 0.1	<100	<100	<100	< 0.1	< 0.1	< 0.1	<100	<0.1	NT	<100	<0.1	< 0.1	< 0.1	<0.1	NT
TP16_0.1-0.2_230925	Soil - primary	25 Sep 2023	< 0.1	< 0.1	<0.1	<100	<100	<100	<0.1	<0.1	< 0.1	<100	<0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
TP17 0.0-0.1 230925	Soil - primary	25 Sep 2023	< 0.1	<0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	< 0.1	NT	<100	<0.1	<0.1	< 0.1	<0.1	NT
SP1	Soil - primary	25 Sep 2023	<0.1	<0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	<0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
BR1	duplicate Inter	25 Sep 2023	NT	<0.1	<0.1	<500	<500	<500	<0.1	<0.1	<0.1	<500	<0.1	<0.5	<500	<0.1	<0.1	<0.1	NT	<10
SR1	duplicate Intra	25 Sep 2023	<0.1	<0.1	<0.1	<100	<100	<100	<0.1	<0.1	<0.1	<100	<0.1	NT	<100	<0.1	<0.1	<0.1	<0.1	NT
L	lashare uno	1	-0.2	-012	-0.1	.100	.100	.100	-0.2	-0.1	-014	.100	- 0. 2	1	.100		.0.1	.0.1		
Statistics																				
Number of Results			30	31	31	31	31	31	31	31	31	31	31	1	31	31	31	31	30	1
Number of Detects			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			_													· · ·				

Average Concentration *

Minimum Concentration

Maximum Concentration

* A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

2013, NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

<0.1

<0.1

0.05

<0.1

<0.5

0.056

<0.1

<0.5

0.056

<100

<500

56

<100

<500

56

<100

<500

56

<0.1

<0.5

0.056

<0.1

<0.5

0.056

<0.1

<0.5

0.056

<100

<500

56

<0.1

<0.5

0.056

<0.5

<0.5

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil

31	31	31	31	30	1
0	0	0	0	0	0
<100	<0.1	<0.1	<0.1	<0.1	<10
<500	<0.5	<0.5	<0.5	<0.1	<10
56	0.056	0.056	0.056	0.05	

			Phenols		Halogenated	Hydrocarbons		Solvents
			FIICHUIS			· ·		301461113
			Phenolics Total	1, 2-dibromoethane	Bromomethane	Dichlorodifluorometh ane	Trichlorofluorometha ne	Cyclohexane
r			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NEPM 2013 Table 1A(1) HILs Res A Soil								
NEPM 2013 Table 1A(3) Res A/B Soil HS	• • • •	-						
NEPM 2013 Table 1B(7) Management L								
NEPM 2013 Table 1B(5) Site specific EIL	· · · · ·	•						
NEPM 2013 Table 1B(6) ESLs for Urban	Residential and Public Open	Space, Fine Soil						
Field ID	Sample Type	Date						
BH2_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT
BH02_1.5	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
BH3_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT
BH04_1.0	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
BH5_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT
BH06_1.0	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
BH7_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT
BH8_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT
ВН9_0.0-0.1	Soil - primary	04 Oct 2023	NT	NT	NT	NT	NT	NT
BH09_1.0	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP1_0.1-0.2_230925	Soil - primary	25 Sep 2023	<5	<1	<1	<1	<1	<1
TP2_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP3_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP4_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP5_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP6_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP7_0.0-0.2_230925	Soil - primary	25 Sep 2023	<5	<1	<1	<1	<1	<1
TP8_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP9_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP10_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP11_0.0-0.2_230925	Soil - primary	25 Sep 2023	<5	<1	<1	<1	<1	<1
TP11_0.3-0.4_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP12_0.0-0.1_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP13_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP14_0.0-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP15_0.0-0.2 _230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP16_0.1-0.2_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
TP17_0.0-0.1_230925	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
SP1	Soil - primary	25 Sep 2023	NT	NT	NT	NT	NT	NT
BR1	duplicate Inter	25 Sep 2023	NT	NT	NT	NT	NT	NT
SR1	duplicate Intra	25 Sep 2023	NT	NT	NT	NT	NT	NT

Statistics

Number of Results	3	3	3	3	3	3
Number of Detects	0	0	0	0	0	0
Minimum Concentration	<5	<1	<1	<1	<1	<1
Maximum Concentration	<5	<1	<1	<1	<1	<1
Average Concentration *	2.5	0.5	0.5	0.5	0.5	0.5

* A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

2013, NEPM 2013 Table 1B(6) ESLs for Areas of Ecological Significance, Coarse Soil

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Fine Soil HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure

Melrose Park GEO & ENV Services

				kane Sulfonic Sids	. ,	rotelomer c Acids	Perfluoroalkane Carboxylic Acids		PFAS	
			Perfluorohexane sulfonic acid (PFHxS)	Perfluorooctane sulfonic acid (PFOS)	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	Perfluorooctanoic acid (PFOA)	Sum of PFHxS and PFOS	Sum of PFAS	Sum of PFAS (PFOS + PFOA)
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PFAS NEMP 2020 Reside		ssible soil (HIL A)	0.01	0.01			0.1	0.01		
PFAS NEMP 2020 Ecologi	•			0.01						
PFAS NEMP 2020 Ecologi	ical direct exposure			1			10			
Field ID	Sample Type	Date								
BH2 0.0-0.1	Normal	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT
BH2_0.0-0.1 BH2_0.0-0.1	Normal	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT
BH2_0.0-0.1 BH02 1.5	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
BH3 0.0-0.1	Normal	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT
BH04_1.0	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
BH5_0.0-0.1	Normal	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT
BH06 1.0	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
BH7 0.0-0.1	Normal	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT
BH8 0.0-0.1	Normal	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT
BH9 0.0-0.1	Normal	04 Oct 2023	NT	NT	NT	NT	NT	NT	NT	NT
BH09 1.0	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
BR1	Interlab D	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
SP1	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
SR1	Field D	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP1_0.1-0.2_230925	Normal	25 Sep 2023	0.0002	0.0055	< 0.0001	< 0.0002	0.0003	0.0058	0.0060	0.0058
TP2_0.1-0.2_230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP3_0.0-0.2_230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP4_0.0-0.2_230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP5 0.0-0.2 230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP6 0.0-0.2 230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP7 0.0-0.2 230925	Normal	25 Sep 2023	0.0005	0.0075	< 0.0001	< 0.0002	0.0010	0.0080	0.0091	0.0085
TP8 0.0-0.2 230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP9 0.1-0.2 230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP10 0.0-0.2 230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP11_0.0-0.2_230925	Normal	25 Sep 2023	0.0007	0.0005	< 0.0001	< 0.0002	0.0002	0.0012	0.0014	0.0007
TP11_0.3-0.4_230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP12_0.0-0.1_230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP13_0.1-0.2_230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP14_0.0-0.2_230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP15_0.0-0.2_230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP16_0.1-0.2_230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
TP17_0.0-0.1_230925	Normal	25 Sep 2023	NT	NT	NT	NT	NT	NT	NT	NT
Statistics										
									-	

Statistics

3	3	3	3	3	3	3	3
3	3	0	0	3	3	3	3
0.0002	0.0005	<0.0001	<0.0002	0.0002	0.0012	0.0014	0.0007
0.0007	0.0075	<0.0001	<0.0002	0.001	0.008	0.0091	0.0085
0.00047	0.0045	0.00005	0.0001	0.0005	0.005	0.0055	0.005
	0.0007	0.0007 0.0075	0.0007 0.0075 <0.0001	0.0007 0.0075 <0.0001 <0.0002	0.0007 0.0075 <0.0001 <0.0002 0.001	0.0007 0.0075 <0.0001 <0.0002 0.001 0.008	0.0007 0.0075 <0.0001 <0.0002 0.001 0.008 0.0091

* A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure

HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure

Melrose Park GEO & ENV Services

	A B C	D E UCL Statis	F stics for Unc	G ensored Ful	H Data Sets	I	J	К	L
1									
3	User Selected Options								
4	Date/Time of Computation	ProUCL 5.125/10/2023 3	3:17:56 PM						
4 5	From File	WorkSheet.xls							
6	Full Precision	OFF							
7	Confidence Coefficient	95%							
8	Number of Bootstrap Operations	2000							
<u> </u>									
10									
11	Lead								
12									
13			General	Statistics					
14	Total	Number of Observations	30			Number	r of Distinct C	bservations	24
15						Number	of Missing C	bservations	0
16		Minimum	2					Mean	61.73
17		Maximum	440					Median	44
18		SD	77.73				Std. E	rror of Mean	14.19
19		Coefficient of Variation	1.259					Skewness	4.262
20			I	I					
20			Normal (GOF Test					
22	SI	hapiro Wilk Test Statistic	0.518			Shapiro Wi	lk GOF Test		
23	5% Sł	napiro Wilk Critical Value	0.927		Data No	ot Normal at 5	5% Significan	ice Level	
24		Lilliefors Test Statistic	0.299			Lilliefors	GOF Test		
25	50	% Lilliefors Critical Value	0.159		Data No	ot Normal at 5	5% Significan	ice Level	
26		Data Not	Normal at 5	% Significa	nce Level				
27									
28		As	suming Nor	nal Distribut	ion				
29	95% No	ormal UCL			95%	o UCLs (Adju	sted for Ske	wness)	
30		95% Student's-t UCL	85.85			95% Adjuste	ed-CLT UCL ((Chen-1995)	96.88
31						95% Modifie	ed-t UCL (Joł	nnson-1978)	87.69
32				•					
33			Gamma	GOF Test					
34		A-D Test Statistic	1.349			rson-Darling			
35		5% A-D Critical Value	0.765	D		nma Distribut	-		vel
36		K-S Test Statistic	0.186			gorov-Smirno			
37		5% K-S Critical Value	0.163			nma Distribut	ed at 5% Sig	nificance Lev	vel
38		Data Not Gam	na Distribute	ed at 5% Sig	nificance Le	evel			
39									
40				Statistics					
41		k hat (MLE)	1.407				star (bias cor	,	1.288
42		Theta hat (MLE)	43.88			Theta s	star (bias cor	,	47.91
43		nu hat (MLE)	84.41				•	is corrected)	77.3
44	ML	E Mean (bias corrected)	61.73			<u> </u>	MLE Sd (bia	,	54.39
45			0.04			Approximate			58.05
46	Adjus	ted Level of Significance	0.041			Ac	djusted Chi S	quare Value	57.09
47					•				
48			suming Gam	ima Distribu		<u></u>			00.50
49	95% Approximate Gamma	UCL (use when n>=50))	82.21		95% Ac	ljusted Gamr	na UCL (use	when n<50)	83.59
50				0055					
51				GOF Test					
52	S	hapiro Wilk Test Statistic	0.894		Sha	piro Wilk Log	inormal GOF	r lest	

	А		В	}		С			D	/:II. C		E		F		G			H Na Nia		I		J			K	I	L
53						5	5% S	•				Value		0.927				Dat			jnorma					e Leve		
54							E					tatistic Value		0.177 0.159				Det			ors Lo Inorma	-						
55							5	070 L	liner					ormal a	+ 5%	Sign	ifico				JUOITIE	arata	0% Ol	gninc	ance	Leve		
56											Dat		Logn		1.5%	Sign	inca	nce	Level									
57														gnorma	al St	atistic												
58								Min	imun	n of I	onde	d Data		0.693		ausuc							Me	an of		jed Da	ta	3.727
59												d Data		6.087	-											jed Da		0.934
60											33-														32	,		
61 62												Ass	umin	g Logno	orma	al Dist	tribu	tion										
63											95% I	H-UCL		7.35							90	0% C	hebys	shev ((MVL	JE) UC	L	99.5
64						ç	95%	Che	bysł	nev (MVUE) UCL	. 11	6							97.5	5% C	hebys	shev ((MVL	JE) UC	L	139
65						ç	99%	Che	bysł	nev (MVUE) UCL	18	84.1													-	
66															1													
67											Non	baram	etric	Distribu	ition	Free	UCI	L Sta	tistic	s								
68										[Data c	lo not	follov	v a Disc	cerni	ble D	istril	butio	n (0.0	05)								
69																												
70														etric Dis	stribu	ution F	Free	UCL	.s									
71												T UCL		5.08												nife UC		85.85
72												p UCL		4.41												ap-t UC		120.2
73												p UCL		80.6							95	% Pe	ercent	ile Bo	ootst	rap UC	<u>۲</u>	86.03
74												p UCL		8.00														
75										•		I) UCL		94.3												Sd) UC		123.6
76					9	17.5	% Ch	neby	shev	/(Me	an, So	l) UCL	15	60.4							99%	Che	byshe	ev(IVIe	ean, s	Sd) UC	;L	202.9
77													S.1/2	gested														
78						05%	(Ch	obv	show	(Mo	on Sc	I) UCL	_	3.6		L 10 U	ise											
79						907		eby	SHEV		an, ot		12	.5.0														
80		No	te: S	uaae	estion	ns re	aard	lina	the s	selec	tion o	f a 95%	6 UC	L are pr	rovid	led to	heln	the	user	to se	lect th	e mo	st apr	oropri	iate 9	95% U	CL	
81				~99			-							pon dat														
82 83		Т	hese	reco	omme	enda								· f the sim										e, an	d Lee	e (200	6).	
84		How	ever,	simu	ulatio	ons r	esult	ts w	ill no	t cov	er all	Real V	Vorld	data se	ets; fo	or add	ditior	nal in	sight	the	iser m	ay w	ant to	cons	ult a	statis	icia	٦.
85																												
86																												
	Benzo(a) pyre	ene																									
88																												
89													C	General	Stat	tistics	;											
90						-	Total	Nu	mber	r of C)bser\	ations	3	0							Num	ber o	of Dist	tinct (Obse	ervatio	าร	9
91																					Num	ber c	of Miss	sing (Obse	ervatio	าร	0
92												nimum		.05												Mea		0.171
93											Ma	ximum		1.4												Media		0.05
94												SD		0.278									ŝ	Std. E		of Mea		0.0507
95								С	oeffi	cient	of Va	riation		1.624											Sł	kewne	SS	3.385
96															00-													
97								<u>`</u>		V:U - 7	C	tot:			GOF	· iest						\ A /!!!	005	T ·	•			
98						F						tatistic Value		0.506 0.927				-	ata N		n apiro ormal					ovel		
99						0	0/0 3	•				tatistic		0.927 0.401				D	aid N	NULIN	ormai		-		iice l	_evei		
100							5					Value		0.159	-				ata N	lot N	ormal				nce I	امررما		
101							5	, /U L						mal at 5	5% 9	Sianifi	can			1011	onnai	a. 0 /	Jugi	med				
102																a												
103												As	sum	ing Nor	mal	Distri	butio	on										
104												<i>,</i>																

	A B C D E	F	G H I J K	L
105	95% Normal UCL	0.057	95% UCLs (Adjusted for Skewness)	0.000
106	95% Student's-t UCL	0.257	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	0.288
107			95% Modified-t OCE (Johnson-1978)	0.202
108		Gamma	GOF Test	
109	A-D Test Statistic	4.795	Anderson-Darling Gamma GOF Test	
110	5% A-D Critical Value	0.779	Data Not Gamma Distributed at 5% Significance Lev	rel
111	K-S Test Statistic	0.346	Kolmogorov-Smirnov Gamma GOF Test	
112	5% K-S Critical Value	0.165	Data Not Gamma Distributed at 5% Significance Lev	rel
113 114	Data Not Gamn	na Distribute	ed at 5% Significance Level	
115				
116		Gamma	Statistics	
117	k hat (MLE)	0.934	k star (bias corrected MLE)	0.863
118	Theta hat (MLE)	0.183	Theta star (bias corrected MLE)	0.198
119	nu hat (MLE)	56.02	nu star (bias corrected)	51.75
120	MLE Mean (bias corrected)	0.171	MLE Sd (bias corrected)	0.184
121			Approximate Chi Square Value (0.05)	36.23
122	Adjusted Level of Significance	0.041	Adjusted Chi Square Value	35.48
123				
124				
125	95% Approximate Gamma UCL (use when n>=50))	0.244	95% Adjusted Gamma UCL (use when n<50)	0.249
126				
127		-	GOF Test	
128	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.684	Shapiro Wilk Lognormal GOF Test Data Not Lognormal at 5% Significance Level	
129	5% Shapiro Wilk Chical Value	0.927	Lilliefors Lognormal GOF Test	
130	5% Lilliefors Critical Value	0.304	Data Not Lognormal at 5% Significance Level	
131			5% Significance Level	
132		ognormarat		
133		Lognorma	I Statistics	
134 135	Minimum of Logged Data	-2.996	Mean of logged Data	-2.389
136	Maximum of Logged Data	0.336	SD of logged Data	0.956
130				
137	Assu	iming Logno	ormal Distribution	
139	95% H-UCL	0.223	90% Chebyshev (MVUE) UCL	0.226
140	95% Chebyshev (MVUE) UCL	0.265	97.5% Chebyshev (MVUE) UCL	0.318
141	99% Chebyshev (MVUE) UCL	0.422		
142				
143			tion Free UCL Statistics	
144	Data do not fo	ollow a Disc	ernible Distribution (0.05)	
145			· · · · · ·	
146	-		tribution Free UCLs	
147	95% CLT UCL	0.254	95% Jackknife UCL	0.257
148	95% Standard Bootstrap UCL	0.255	95% Bootstrap-t UCL	0.333
149	95% Hall's Bootstrap UCL	0.515	95% Percentile Bootstrap UCL	0.261
150	95% BCA Bootstrap UCL	0.292	OE0/ Chabyahay/Maar Od UO	0.202
151	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	0.323	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	0.392
152	97.5% Chebysnev(Mean, Sd) UCL	0.488	55% Chebysnev(iviean, Sd) UCL	0.675
153		Suggested	UCL to Use	
154	95% Chebyshev (Mean, Sd) UCL	0.392		
155		0.002		
156				

	A B C D E	F UCL are pr	G H I J K ovided to help the user to select the most appropriate 95% UCL.	L				
157	Decommon detions are here		a size, data distribution, and skewness.					
158	These versions detions are beend upon the version	•	nulation studies summarized in Singh, Maichle, and Lee (2006).					
159	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.							
160								
161								
162	TRH C16-C34							
163								
164		General	Statistics					
165 166	Total Number of Observations	30	Number of Distinct Observations	8				
167			Number of Missing Observations	0				
167	Minimum	100	Mean	122				
169	Maximum	420	Median	100				
170	92	62.33	Std. Error of Mean	11.38				
170	Coefficient of Variation	0.511	Skewness	4.133				
172								
173		Normal C	GOF Test					
174	Shapiro Wilk Test Statistic	0.414	Shapiro Wilk GOF Test					
175	5% Shapiro Wilk Critical Value	0.927	Data Not Normal at 5% Significance Level					
176	Lilliofora Toot Statiatia	0.376	Lilliefors GOF Test					
177	5% Lilliefors Critical Value	0.159	Data Not Normal at 5% Significance Level					
178	Data Not	Normal at 5	Significance Level					
179								
180	A	suming Norr	mal Distribution					
181	95% Normal UCL		95% UCLs (Adjusted for Skewness)					
182	95% Student's-t UCL	141.3	95% Adjusted-CLT UCL (Chen-1995)	149.9				
183			95% Modified-t UCL (Johnson-1978)	142.8				
184								
185		Gamma	GOF Test					
186	A-D Test Statistic	6.43	Anderson-Darling Gamma GOF Test					
187		0.746	Data Not Gamma Distributed at 5% Significance Leve	əl				
188		0.396	Kolmogorov-Smirnov Gamma GOF Test					
189		0.16	Data Not Gamma Distributed at 5% Significance Leve	el				
190	Data Not Gamm	na Distribute	ed at 5% Significance Level					
191								
192			Statistics					
193		7.867	k star (bias corrected MLE)	7.103				
194		15.51	Theta star (bias corrected MLE)	17.18				
195		472	nu star (bias corrected)	426.2				
196	MLE Mean (bias corrected)	122	MLE Sd (bias corrected)	45.78				
197		0.041	Approximate Chi Square Value (0.05)	379.3				
198		0.041	Adjusted Chi Square Value	376.8				
199	A		n Distribution					
200	Ass 95% Approximate Gamma UCL (use when n>=50))	137.1	ma Distribution 95% Adjusted Gamma UCL (use when n<50)	138				
201	35 /0 Approximate Gamma OCL (use when h>=30))	137.1		100				
202		Lognorma	I GOF Test					
203	Shapiro Wilk Test Statistic	0.51	Shapiro Wilk Lognormal GOF Test					
204	EQ(Chaning Will Oritical Value	0.51	Data Not Lognormal at 5% Significance Level					
205	Lilliofere Test Statistic	0.399	Lilliefors Lognormal GOF Test					
206	E% Lilliofere Critical Value	0.399	Data Not Lognormal at 5% Significance Level					
207	Data Nat I		5% Significance Level					
208								

	А	В	С	D	E	F	G	Н		J	K	L
209												
210	Lognormal Statistics											
211	Minimum of Logged Data 4.605 Mean of logged Data										4.739	
212			Ν	Maximum of L	ogged Data	6.04				SD of	logged Data	0.314
213												
214					Assı	uming Logno	rmal Distribu	ution				
215					95% H-UCL	133.5				Chebyshev (,	140.8
216				Chebyshev (,	150.3			97.5%	Chebyshev (MVUE) UCL	163.5
217			99%	Chebyshev (MVUE) UCL	189.4						
218												
219					•		tion Free UC					
220				Ι	Data do not f	ollow a Disc	ernible Distri	ibution (0.0	5)			
221												
222					•		ribution Free	eUCLs				
223				95	% CLT UCL	140.7				95% Ja	ckknife UCL	141.3
224			95%	Standard Bo	otstrap UCL	140.2	95% Bootstrap-t UCL			171.9		
225			ç	5% Hall's Bo	otstrap UCL	199.9	95% Percentile Bootstrap UCL				142.7	
226	95% BCA Bootstrap UCL 152					152						
227	90% Chebyshev(Mean, Sd) UCL					156.1	, , , , , , , , , , , , , , , , , , ,				171.6	
228	97.5% Chebyshev(Mean, Sd) UCL					193.1			99% Ch	ebyshev(Me	an, Sd) UCL	235.2
229												
230		Suggested UCL to Use										
231	95% Student's-t UCL 141.3 or 95% Modified-t UCL								142.8			
232												
233	1	Note: Sugges	stions regard	ling the selec	tion of a 95%	UCL are pro	ovided to help	p the user to	o select the m	nost appropria	ate 95% UCL	
234			F	Recommenda	tions are bas	sed upon dat	a size, data c	distribution,	and skewnes	S.		
235		These recor	mmendations	s are based u	pon the resu	Its of the sim	ulation studie	es summari	zed in Singh,	Maichle, and	d Lee (2006).	
236	Но	wever, simu	lations result	s will not cov	er all Real W	/orld data set	ts; for additio	nal insight t	he user may	want to cons	ult a statistici	an.
237												

Appendix F – Analytical Reports and Chain of Custody

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669 A.B.N. 52 093 452 950

 Analysis report:
 A101023.0436.00

 Laboratory LOT NO:
 2304101

Date Received:	28.09.2023
Date Analysed:	05.10.2023
Report Date:	06.10.2023
Client:	ADE Consulting Group
Job Location:	As received
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

*Asbestos identification as per "National Environment Protection (Assessment of site contamination) Measure, Schedule B1" and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" is not coverd by NATA scope of accreditation

Analysis performed by:

Grace T.g

Grace (Weichen) Jia Approved asbestos identifier

Results Authorised By:

(mae Tig

Grace (Weichen) Jia Approved Signatory

1

General Comments:

Sydney Laboratory Services is responsible for all the information in the report, except that provided by the customer. All sampling information included in the report has been provided by the client

Sample analysed as received.

Samples are stored for minimum period of 1 month if longer time is not advised by client.

Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.01g/kg (0.001% w/w) for friable asbestos and 0.1g/kg (0.01% w/w) for bonded asbestos.

This form of analysis is outside the scope of NATA accreditation.

Bonded asbestos containing material (bonded ACM): Bonded ACM comprises asbestos-containing-material which is in sound condition, although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve.

Fibrous asbestos (FA): FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or was previously bonded and is now significantly degraded (crumbling).

Asbestos fines (AF): AF includes free fibres, small fibre bundles and also small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. Note: The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

2

	Laboratory Sampl No.	e Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Weight (Dry Weight)	Trace Analysis Completed Y/N	Result	Comments
TP1_0.1- 0.2_230925	2023028507	Granulated dark soil	500ml	659 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy	No Crocidolite asbestos detected by polarized light microscopy including	Nil
					including dispersion staining.	dispersion staining. No Synthetic Mineral Fibres detected by polarized light microscopy including	Nil
						dispersion staining. Organic fibres detected by polarized light	Nil
TP2_0.1-	2023028508	Granulated dark soil	500ml	592 grams		microscopy including dispersion staining. No Chrysotile asbestos detected by polarized	Nil
0.2_230925						light microscopy including dispersion staining.	
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Näl
					Yes, no trace asbestos detected by polarized light microscopy including dispersion	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP3_0.0- 0.2_230925	2023028509	Granulated dark soil	500ml	730 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion	Nil
0.1_130313						staining. No Amosite asbestos detected by polarized	Nil
					Yes, no trace asbestos	light microscopy including dispersion staining. No Crocidolite asbestos detected by	Nil
					detected by polarized light microscopy including dispersion staining.	polarized light microscopy including dispersion staining.	
					stannig.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP4_0.0- 0.2_230925	2023028510	Granulated dark soil	500ml	711 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion	Nil
						staining. No Amosite asbestos detected by polarized light microscopy including dispersion	Nil
					Yes, no trace asbestos detected by polarized	staining. No Crocidolite asbestos detected by	Nil
					light microscopy including dispersion staining.	polarized light microscopy including dispersion staining. No Synthetic Mineral Fibres detected by	Nil
						polarized light microscopy including dispersion staining.	
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP5_0.0- 0.2_230925	2023028511	Granulated dark soil	500ml	482 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy	No Crossida Eto achiestos detectod hu	Nil
					including dispersion staining.	dispersion staining. No Synthetic Mineral Fibres detected by	Nil
						polarized light microscopy including dispersion staining. Organic fibres detected by polarized light	Nil
TP6 0.0-	2023028512	Granulated dark soil	500ml	604 mmm		microscopy including dispersion staining.	69
0.2_230925	2023028512	Granulated dark soli	Suumi	604 grams		No chrysothe aspestos detected by polarized light microscopy including dispersion staining.	NII .
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					including dispersion staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including	Nil
						dispersion staining. Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP7_0.0-	2023028513	Granulated dark soil	500ml	486 grams		No Chrysotile asbestos detected by polarized	Nil
0.2_230925						light microscopy including dispersion staining. No Amosite asbestos detected by polarized	Nil
					Yes, no trace asbestos	light microscopy including dispersion staining.	
					detected by polarized light microscopy including dispersion	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
	2023028514	Granulated dark soil	500ml	585 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion	Nil
TP9_0.1- 0.2_230925	2023028314		1	1		staining.	
TP9_0.1- 0.2_230925	2023028314					No Amosite asbestos detected by polarized	Nil
TP9_0.1- 0.2_230925	2023028314				Yes, no trace asbestos	light microscopy including dispersion staining.	Nii
TP9_0.1- 0.2_230925	2023028314				detected by polarized light microscopy including dispersion	light microscopy including dispersion staining. No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	
TP9_0.1- 0.2_230925	2023028514				detected by polarized light microscopy	light microscopy including dispersion staining. No Crocidolite asbestos detected by polarized light microscopy including	

Client Sample ID.	Laboratory Sampl No.	e Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Weight (Dry Weight)	Trace Analysis Completed Y/N	Result	Comments
TP10_0.0- 0.2_230925	2023028515	Granulated dark soil	500ml	535 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy including dispersion	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP11_0.0- 0.2_230925	2023028516	Granulated dark soil	500ml	757 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion	Nil
						staining. No Amosite asbestos detected by polarized light microscopy including dispersion	Nil
					Yes, no trace asbestos detected by polarized light microscopy	staining. No Crocidolite asbestos detected by polarized light microscopy including	Nil
					including dispersion staining.	dispersion staining. No Synthetic Mineral Fibres detected by polarized light microscopy including	Nil
						dispersion staining. Organic fibres detected by polarized light	Nil
TP12_0.0-	2023028517	Granulated dark soil	500ml	613 grams		microscopy including dispersion staining. No Chrysotile asbestos detected by polarized	Nil
0.1_230925						light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos	light microscopy including dispersion staining.	
					detected by polarized light microscopy including dispersion staining.	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Stanning.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP13_0.1- 0.2_230925	2023028518	Granulated dark soil	500ml	530 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					including dispersion staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including	Nil
						dispersion staining. Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP14_0.0- 0.2_230925	2023028519	Granulated dark soil	500ml	599 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion	Nil
					Yes, no trace asbestos detected by polarized light microscopy	polarized light microscopy including	Nil
					including dispersion staining.	dispersion staining. No Synthetic Mineral Fibres detected by polarized light microscopy including	Nil
						dispersion staining. Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP15_0.0- 0.2_230925	2023028520	Granulated dark soil	500ml	634 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion	Nil
0.2_230923						staining. No Amosite asbestos detected by polarized	Nil
					Yes, no trace asbestos	light microscopy including dispersion staining. No Crocidolite asbestos detected by	Nil
					detected by polarized light microscopy including dispersion staining.	polarized light microscopy including dispersion staining.	
						No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP16_0.1- 0.2_230925	2023028521	Granulated dark soil	500ml	586 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					including dispersion staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including	Nil
						dispersion staining. Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
TP17_0.0- 0.2_230925	2023028522	Granulated dark soil	500ml	500 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion	Nil
						staining.	Nil
					Yes, no trace asbestos detected by polarized	staining. No Crocidolite asbestos detected by	Nil
					light microscopy including dispersion staining.	polarized light microscopy including dispersion staining. No Synthetic Mineral Fibres detected by	Nil
						polarized light microscopy including dispersion staining.	
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669 A.B.N. 52 093 452 950

 Analysis report:
 A101023.0436.00

 Laboratory LOT NO:
 2304101

Date Received:28.09.2023Date Analysed:05.10.2023Report Date:06.10.2023Client:ADE Consulting GroupJob Location:As receivedAnalytical method:ABI-P-01: Procedure for the Analysis and ID of Bulk Samples for Asbestos

Analysis performed by:

Grace Tig

Grace (Weichen) Jia Approved asbestos identifier

Results Authorised By:

Grac Tig

Grace (Weichen) Jia Approved Signatory

This report superceeds all previous reports with the same reference. This report shall not be reproduced except in full

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025 - Testing.

Tests not covered by NATA are denoted with *.

General Comments:

Sydney Laboratory Services is responsible for all the information in the report, except that provided by the customer. All sampling information included in the report has been provided by the client.

Sample analysed as received.

Samples are stored for minimum period of 4 weeks, if longer time is not advised by client.

All positive/negative results have been confirmed by polarized light microscopy including dispersion staining.

ABI-P-01: Qualitative Identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques as per AS4964.

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025 - Testing.

Tests not covered by NATA are denoted with *.

Client Sample ID.	Laboratory Sample No.	Sample Description/Matrix	Sample Dry Weight (g)	Trace Analysis (> 5 Fibres)	Asbestos ID in Soil (AS4964) >0.1g/kg	Weight Total ACM (g)	Comments	
BH01_1.0	2023028501	Granulated dark soil with rocks	143.00	No asbestos detected at the reporting limit of 0.1g/kg ND Organic Fibres Detected	of 0.1g/kg		N/A	Nil
					Organic Fibres Detected			
BH03_1.0	2023028502	Granulated dark soil with rocks	127.00	ND	No asbestos detected at the reporting limit of 0.1g/kg N/A		Nil	
					Organic Fibres Detected			
BH04_1.0	2023028503	Granulated dark soil with rocks	135.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil	
					Organic Fibres Detected			
BH06_1.0	2023028504	2023028504	Granulated dark soil with rocks	123.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil
					Organic Fibres Detected			
BH09_1.0	2023028505	Granulated dark soil with 161.00 ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil			
					Organic Fibres Detected			
BH10_1.0	2023028506	Granulated dark soil with rocks	102.00	ND	No asbestos detected at the reporting limit of 0.1g/kg	N/A	Nil	
					Organic Fibres Detected			

Sydney Laboratory Services

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669 A.B.N. 52 093 452 950

 Analysis report:
 A101023.0436.00

 Laboratory LOT NO:
 2304153

Date Received:	05.10.2023
Date Analysed:	06.10.2023
Report Date:	06.10.2023
Client:	ADE Consulting Group
Job Location:	As received
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

*Asbestos identification as per "National Environment Protection (Assessment of site contamination) Measure, Schedule B1" and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" is not coverd by NATA scope of accreditation

Analysis performed by:

Michelle Ogilvie Approved asbestos identifier **Results Authorised By:**

(mae Tig

Grace (Weichen) Jia Approved Signatory

1
General Comments:

Sydney Laboratory Services is responsible for all the information in the report, except that provided by the customer. All sampling information included in the report has been provided by the client

Sample analysed as received.

Samples are stored for minimum period of 1 month if longer time is not advised by client.

Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.01g/kg (0.001% w/w) for friable asbestos and 0.1g/kg (0.01% w/w) for bonded asbestos.

This form of analysis is outside the scope of NATA accreditation.

Bonded asbestos containing material (bonded ACM): Bonded ACM comprises asbestos-containing-material which is in sound condition, although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve.

Fibrous asbestos (FA): FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or was previously bonded and is now significantly degraded (crumbling).

Asbestos fines (AF): AF includes free fibres, small fibre bundles and also small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. Note: The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

2

Client Sample ID.	Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Weight (Dry Weight)	Trace Analysis Completed Y/N	Result	Comments
BH2_0.0-0.1	2023028927	Granulated dark soil	500ml	476 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy including dispersion	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
BH3_0.0-0.1	2023028928	Granulated dark soil	500ml	538 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy including dispersion	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
BH5_0.0-0.1	2023028929	Granulated dark soil	500ml	605 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy including dispersion staining.	No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
BH7_0.0-0.1	2023028930	Granulated dark soil	500ml	480 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy including dispersion	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
BH8_0.0-0.1	2023028931	Granulated dark soil	500ml	563 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					Yes, no trace asbestos detected by polarized light microscopy including dispersion	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil
BH9_0.0-0.1	2023028932	Granulated dark soil	500ml	582 grams		No Chrysotile asbestos detected by polarized light microscopy including dispersion staining.	Nil
						No Amosite asbestos detected by polarized light microscopy including dispersion staining.	
					Yes, no trace asbestos detected by polarized light microscopy including dispersion	No Crocidolite asbestos detected by polarized light microscopy including dispersion staining.	Nil
					staining.	No Synthetic Mineral Fibres detected by polarized light microscopy including dispersion staining.	Nil
						Organic fibres detected by polarized light microscopy including dispersion staining.	Nil

3

ENVIROLAB	CHAIN OF CUSTODY FORM - Client									ENVIROLAB GROUP National phone number 1300 424 344 Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067										
[Copyright and Conf	[Copyright and Confidential]												0 02	9910	6200 ji	iiswoo ⊠ sydi	ney@ei	virolab.com.au		
Client: ADE Consu					Client Project	t Name/	Number	/Site etc./	lie repo	rt title)					16-1	8 Have	MPL I	. Mvare	ee. WA	6154
Contact Person: Karin Azzam				Client Project Name/Number/Site etc (ie report title): A101023.0436 / Mel103C Park						16-18 Hayden Crt, Myaree, WA 6154 ① 08 9317 2505 점 lab@mpl.com.au					om.au					
Project Mgr: Karin	Azzam		•		PO No.:		-	· U = .	/ :	- 1			<u> </u>						lab Ser	
Sampler: Ankita Sa	axena				Envirolab Qu	iote No.	:								25 R 0 03	esearc 9763	:h Driv 2500	e, Croy I mel	/don So bourne	outh, VIC 3136 @envirolab.com.au
Address: 6/7 Miller	nnium Ct, Silverwater NSW 2128				Date results	required	l:										•			~
					Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharges apply						,	7a T	he Par	ade, N	orwood	lab Ser d, SA 5 laide@				
Phone:		Mob:	0490 072 877		Additional re	port for	mat: es	dat / equi	s /				-		Bris	bane C	office -	Enviro	lab Sei	Nices
Email:	karin.azzam@ade.group,			oup,	Lab Comme	_			_			_			20a, © 07	3266	9532 [St, Bar 🖾 bris	bane@	.D 4014 envirolab.com.au
	stephen.bowly@ade.grou	<u>qı</u>													Unit	20/119	Reich	ardt Re	b Servi oad, W win@er	ices Vinnellie, NT 0820 Ivirolab.com.au
	Sample inf	ormátion								Tes	ts Rec	juired			L					Comments
Envirolab Sample	Client Sample ID or	-	. *** e		ation 6			1												
ID	information	Depth	Date sampled	Type of sample	Combination			ſ.												Provide as much information about the sample as you can
				,	S			Ţ												ر بر جه ۲
[[SR1		25.09.2023	Soil	×															
								ų												
												_								
					:															
								ł												
<u> </u>																				
L														_						
L									•											
L																				
L														ĺ	_					
	Please tick the box if observed	l settled sedi	iment present in	water samples is to	be included in	the extr	raction a	nd/or and	alysis											
Relinquished by (C	Company): ADE			Received by (Com	oany): EL	5 541	Þ												Lab Us	se Only
Print Name: KARIN	AZZAM			Print Name: Kar	ty wa	<u> </u>	_			L	ob nui	mber:	333	398	5		Coolin	g: Ice	Nce pa	ick / None
Date & Time: 26.09	.2023			Date & Time: 2	6/9/23	16	640	•		Т	emper	erature: 2° c Security seal: Intact)Broken / None								
Signature: Signature:				TAT Reg - SAME day / 1 /					111											

7²

Form 302_V006

۰.

t

.

SAMPLE RECEIPT ADVICE

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Karin Azzam

Sample Login Details	
Your reference	A101023.0436/Melrose Park
Envirolab Reference	333985
Date Sample Received	26/09/2023
Date Instructions Received	26/09/2023
Date Results Expected to be Reported	04/10/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	2
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 333985

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Karin Azzam
Address	Unit 6, 7 Millenium Court, Silverwater, NSW, 2128

Sample Details	
Your Reference	A101023.0436/Melrose Park
Number of Samples	1 Soil
Date samples received	26/09/2023
Date completed instructions received	26/09/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	04/10/2023					
Date of Issue	04/10/2023					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with I	O/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By Dragana Tomas, Senior Chemist Loren Bardwell, Development Chemist Nancy Zhang, Laboratory Manager, Sydney Tim Toll, Chemist (FAS) <u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		333985-1
Your Reference	UNITS	SR1
Date Sampled		25/09/2023
Type of sample		Soil
Date extracted	-	27/09/2023
Date analysed	-	28/09/2023
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	89

svTRH (C10-C40) in Soil		
Our Reference		333985-1
Your Reference	UNITS	SR1
Date Sampled		25/09/2023
Type of sample		Soil
Date extracted	-	27/09/2023
Date analysed	-	28/09/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	120
Total +ve TRH (C10-C36)	mg/kg	120
TRH >C10-C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	100
TRH >C ₃₄ -C ₄₀	mg/kg	130
Total +ve TRH (>C10-C40)	mg/kg	230
Surrogate o-Terphenyl	%	76

PAHs in Soil		
Our Reference		333985-1
Your Reference	UNITS	SR1
Date Sampled		25/09/2023
Type of sample		Soil
Date extracted	-	27/09/2023
Date analysed	-	29/09/2023
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.3
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	0.6
Pyrene	mg/kg	0.6
Benzo(a)anthracene	mg/kg	0.3
Chrysene	mg/kg	0.3
Benzo(b,j+k)fluoranthene	mg/kg	0.5
Benzo(a)pyrene	mg/kg	0.3
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2
Total +ve PAH's	mg/kg	3.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.5
Surrogate p-Terphenyl-d14	%	83

Organochlorine Pesticides in soil		
Our Reference		333985-1
Your Reference	UNITS	SR1
Date Sampled		25/09/2023
Type of sample		Soil
Date extracted	-	27/09/2023
Date analysed	-	28/09/2023
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Mirex	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	95

Organophosphorus Pesticides in Soil		
Our Reference		333985-1
Your Reference	UNITS	SR1
Date Sampled		25/09/2023
Type of sample		Soil
Date extracted	-	27/09/2023
Date analysed	-	29/09/2023
Dichlorvos	mg/kg	<0.1
Mevinphos	mg/kg	<0.1
Phorate	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Disulfoton	mg/kg	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1
Parathion-Methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Fenthion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Methidathion	mg/kg	<0.1
Fenamiphos	mg/kg	<0.1
Ethion	mg/kg	<0.1
Phosalone	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Coumaphos	mg/kg	<0.1
Surrogate TCMX	%	82

PCBs in Soil		
Our Reference		333985-1
Your Reference	UNITS	SR1
Date Sampled		25/09/2023
Type of sample		Soil
Date extracted	-	27/09/2023
Date analysed	-	28/09/2023
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	95

Acid Extractable metals in soil		
Our Reference		333985-1
Your Reference	UNITS	SR1
Date Sampled		25/09/2023
Type of sample		Soil
Date prepared	-	04/10/2023
Date analysed	-	04/10/2023
Arsenic	mg/kg	6
Cadmium	mg/kg	<0.4
Chromium	mg/kg	17
Copper	mg/kg	28
Lead	mg/kg	55
Mercury	mg/kg	<0.1
Nickel	mg/kg	11
Zinc	mg/kg	75

Moisture		
Our Reference		333985-1
Your Reference	UNITS	SR1
Date Sampled		25/09/2023
Type of sample		Soil
Date prepared	-	27/09/2023
Date analysed	-	04/10/2023
Moisture	%	14

Method ID	_ Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT			Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			27/09/2023	[NT]		[NT]	[NT]	27/09/2023	
Date analysed	-			28/09/2023	[NT]		[NT]	[NT]	28/09/2023	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	97	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	97	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	99	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	94	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	97	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	98	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	101	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	83	[NT]		[NT]	[NT]	85	

QUALITY CONTROL: svTRH (C10-C40) in Soil						Duplicate			Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date extracted	-			27/09/2023	[NT]		[NT]	[NT]	27/09/2023		
Date analysed	-			28/09/2023	[NT]		[NT]	[NT]	28/09/2023		
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	76		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	76		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	108		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	76		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	76		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	108		
Surrogate o-Terphenyl	%		Org-020	80	[NT]		[NT]	[NT]	111		

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			27/09/2023	[NT]		[NT]	[NT]	27/09/2023	
Date analysed	-			29/09/2023	[NT]		[NT]	[NT]	29/09/2023	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	105	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	93	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	90	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	92	[NT]		[NT]	[NT]	92	

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			27/09/2023	[NT]		[NT]	[NT]	27/09/2023	
Date analysed	-			28/09/2023	[NT]		[NT]	[NT]	28/09/2023	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92	
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	89	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	71	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94	
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	78	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	120	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Mirex	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	90	[NT]		[NT]	[NT]	84	

QUALITY CONTRO	DL: Organoph	osphorus	s Pesticides in Soi	I		Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			27/09/2023	[NT]		[NT]	[NT]	27/09/2023	
Date analysed	-			29/09/2023	[NT]		[NT]	[NT]	29/09/2023	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	121	
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Phorate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	97	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95	
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104	
Fenthion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	84	
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Methidathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Phosalone	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	84	[NT]		[NT]	[NT]	89	

QUALIT		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			27/09/2023	[NT]		[NT]	[NT]	27/09/2023	
Date analysed	-			28/09/2023	[NT]		[NT]	[NT]	28/09/2023	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	94	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	90	[NT]		[NT]	[NT]	84	

QUALITY CONT	ROL: Acid E	xtractabl		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			04/10/2023	[NT]	[NT]		[NT]	04/10/2023	
Date analysed	-			04/10/2023	[NT]	[NT]		[NT]	04/10/2023	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]		[NT]	112	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]		[NT]	112	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	113	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	110	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	115	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]		[NT]	97	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	109	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	116	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

-	EW			F CUST		r s	<i>.</i>	IVI -	U II		L						5ydr 12 A	shiay Si 9910 6	- Enviro , Chats 200 E	stab Se wood, sydne	NSW :	3 2067 /Irolab.com.au	
Copyright and Confid					Cliant Projec	t Name	/Numbs	r/Site etc	io rep	ort title):		_				Perti	h Labi-I	NPL La	orate	ries		
Contact Person: Ka									1023.04			ark _					16-1	8 Hayde 9317 2	n Crt, M 105 🖂	lyaree, lab@n	WA 6	154 m.au	
Project Mgr: Karin	Azzam			_	PO No.: A101023.0436.002									_	_	_		ioume L					
	axena, Karin Azzam		_		Envirolab Qu Date results								_				25 R	esearch	Drive,	Croyde	on Sou	uth, VIC 3136	
Address: 6/7 Millen	nium C1, Silvorwater NSW 2128				Date results regular regulard: 0 03 9763 2500 [G melbourne@envirolab.com.au Or choose standard / same day / 1 day / 2 day / 3 day Adolaide Office - Envirolab Services Note: Inform Init Tradvance il urgent lumaround is required - surcharges apply Ya The Parade, Norwood, 3A 6067 Vote: Office - Envirolab Services 4 08 7087 6500 [G adelaide@envirolab.com.au										ices								
hone:		Mob:	0490 072 877		Additional re	port fo	mat e	sdat i na	uis /		_						1						
Email:	karin.azzam@ade.group.a stephen.bowiy@ade.group	nkita.saxe		up <u>.</u>	Lab Comme			50EC7 04		_	_						<u>Brisi</u> 20a, 0-67	bane Of 10-20 D 3266 B	tice,-Er epot S1 532 🖂	wirola Banyo brisba	b Sarv b, QLE ine@e	ices) 4014 nvīrolab.com.au	
	Sample info	miation									Л	ests Re	quired									Comments	
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	<u>Type of sample</u>	Combination 6	voc	Phenois	Cyanide	PFAS short suite	РН	EC	Fe	CEC	тос						НОГР		Provide as much information about the sample as you can	
	BH01_1.0	1.0	25.09.2023	Sail																X			
2 2	BH02_1.5	1.5	25.09.2023	Soil	×																		
3 3	BH03_1.0	1.0	25.09.2023	Soil		<u> </u>	<u> </u>													X			
4 4	BH04_1.0	1.0	25.09.2023	Sail	×	<u> </u>			1														
<u> </u>	BH05_1.0	1.0	25.09.2023	Soil	<u> </u>				-											x			
5 <u>6</u> 7 7	BH06_1.0	1.0 1.0	25.09.2023 25.09.2023	Soil Soil	×		\vdash			-						-	$\left \right $			x			
1 4 4	BH07_1.0 BH08_1.0	1.0	25.09.2023	Soil	×	{──			-		<u> </u>					-				<u> </u>	—		
2 4	BH08_1.0	2.5	25.09.2023	Soil	<u>^</u>		-		-	-										x		Envirol	b Sen
10	BH09_1.0	1.0	25.09.2023	Soil	×				1	-										<u>^</u> +			2 Ashl
0 11	BH10_1.0	1.0	25.09.2023	Soil		1			1	i —										x		- ENVIROLAB Chatswood	
1 2	TP1_0.1-0.2_230925	0.1-0.2	25.09.2023	Soil	×	X	х	х	x														
2 3	TP1_0.5-0.6_230925	0.5-0.6	25.09.2023	Soil																x			
3 44 .	TP2_0.1-0.2_230925	0.1-0.2	25.09.2023	Soil	×											-	i					<u>Job No:</u> 33422	3
14 (F	TP3_0.0-0.2_230925	0.0-0.2	25.09.2023	Soil	×																		
5 16	TP3_0.3-0.4_230925	0.3-0.4	25.09.2023	Soil		 														x		Date Received: 28	123
	TP4_0.0-0.2_230925	0.0-0.2	25.09.2023	Soil	×	I				I—		I				<u> </u>						Time Received: 15 2	0
<u>7 (8)</u>	TP4_0.5-0.6_230925	0.5-0.6	25.09.2023	Soil					-							<u> </u>	—			x		Received By: KOV	
9 (9 9 20	TP5_0.0-0.2_230925 TP6_0.0-0.2_230925	0.0-0.2	25.09.2023	Soil Soil	×							<u> </u>		—					-	\rightarrow	-	Temp: CodyAmbient	
1 2	TP7 0.0-0.2_230925	0.0-0.2	25.09.2023	Soil	- <u>×</u>	x	-		x			┼──								—ŀ			4°c
21	TP7_0.4-0.6_230925	0.4-0.6	25.09.2023	Soil	<u></u>	_^	X	х	^		-					-			+	x	_	Cooling Ice/Cepack	Mone
2 28	TP8 0.0-0.2_230925	0.0-0.2	25.09.2023	Soil	×					├									+	<u>^</u> +	-	Security: Intact/Broke	Innone
3 24	TP9_0.1-0.2_230925	0.1-0.2	25.09.2023	Soil	x	i—			1					—	-		├──┤	-+		+			
24 25	TP9_0.4-0.5_230925	0.4-0.5	25.09.2023	Sail		1			1			· ·						+		x			
25 46	TP10_0.0-0.2_230925	0.0-0.2	25.09,2023	Soil	×					1			· · · · ·			-				-			
26 47	TP11_0.0-0.2_230925	0.0-0.2	25.09.2023	Soil	×	X	х	X	X														
27 28	TP11_0.3-0.4_230925	0.3-0.4	25.09.2023	Soil	×					X	X	X	X_	х						T			
28 29	TP12_0.0-0.1_230925		25.09.2023	Soil	_ ×_															T			
29_30_	TP13_0.1-0.2_230925		25.09,2023	Soil	×	<u> </u>	<u> </u>		<u> </u>	L-									-	_	_		
30 31	TP14_0.0-0.2_230925	0.0-0.2	25.09.2023	Soil	×	 —						<u> </u>							-+				
21-45-1	TP15_0.0-0.2_230925	0.0-0.2	25.09.2023	Soil	×				┼━──			—						-+		-+	_		
3234	TP16_0.1-0.2_230925 TP17_0.0-0.1_230925		25.09.2023	Soil	××	 				-								-+	-+	-+	-		
34 35	TP17_0.4-0.5_230925		25.09.2023	Soil	<u> </u>	┼───			+								\vdash	-+	-+-	x			
35 36	SP1	0.4-0.0	25.09.2023	Soil	×		<u>├──</u>		┼──					-				-+		4	-		
2 26	BH 05 - 2-5	(-	erta 1	WW 28		I			1			<u> </u>		-			<u> </u>				\neg		
	Plaase tick the box if observed :	•				n the e	xtractio	n and/or	analysi	<u> </u>		<u> </u>	<u> </u>	I			- 1		_!				
elinquished by (Co				Received by (Comp		5 5					-	_				_			_	L	ab Use	a Only	
tint Name: KARIN				Print Name: V-C		Ing	~	_					Job nu	mber:	3	542	LZ3	6	colina:	_	_	ck / None	
					2/9/23	1	20		_				Tempe									Broken / Nome	

37 TPS 0.0-0.2-230925 (2xtha) 25/9 issue date: 7 October 2019

π.

<u>_</u>___

.

.

SAMPLE RECEIPT ADVICE

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Karin Azzam

Sample Login Details	
Your reference	A101023.0436 / Melrose Park
Envirolab Reference	334223
Date Sample Received	28/09/2023
Date Instructions Received	28/09/2023
Date Results Expected to be Reported	06/10/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	37 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	4
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Misc Inorg - Soil	CEC	PFAS in Soils Short	On Hold
BH01_1.0-1.0													✓
BH02_1.5-1.5		✓	✓	✓	✓	✓	✓	✓					
BH03_1.0-1.0													✓
BH04_1.0-1.0		✓	✓	✓	✓	✓	✓	✓					
BH05_1.0-1.0													✓
BH06_1.0-1.0		✓	✓	✓	✓	\checkmark	✓	✓					
BH07_1.0-1.0													✓
BH08_2.5-2.5													✓
BH09_1.0-1.0		\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark					
BH10_0.0-0.5-1.0													\checkmark
TP1_0.1-0.2_230925-0.1-0.2	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓			\checkmark	
TP1_0.5-0.6_230925-0.5-0.6													\checkmark
TP2_0.1-0.2_230925-0.1-0.2		✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓					
TP3_0.0-0.2_230925-0.0-0.2		✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓					
TP3_0.3-0.4_230925-0.3-0.4													\checkmark
TP4_0.0-0.2_230925-0.0-0.2		✓	✓	\checkmark	\checkmark	\checkmark	✓	✓					
TP4_0.5-0.6_230925-0.5-0.6													\checkmark
TP5_0.0-0.2_230925-0.0-0.2		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
TP6_0.0-0.2_230925-0.0-0.2		\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark					
TP7_0.0-0.2_230925-0.0-0.2	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark			✓	

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Misc Inorg - Soil	CEC	PFAS in Soils Short	On Hold
TP7_0.4-0.6_230925-0.4-0.6													✓
TP8_0.0-0.2_230925-0.0-0.2		\checkmark	✓	✓	✓	✓	\checkmark	✓					
TP9_0.1-0.2_230925-0.1-0.2		✓	✓	✓	✓	✓	✓	✓					
TP9_0.4-0.5_230925-0.4-0.5													\checkmark
TP10_0.0-0.2_230925-0.0-0.2		\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓					
TP11_0.0-0.2_230925-0.0-0.2	\checkmark	✓	✓	\checkmark	\checkmark	✓	\checkmark	✓	✓			\checkmark	
TP11_0.3-0.4_230925-0.3-0.4		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓		\checkmark	\checkmark		
TP12_0.0-0.1_230925-0.0-0.1		✓	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark					
TP13_0.1-0.2_230925-0.1-0.2		✓	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark					
TP14_0.0-0.2_230925-0.0-0.2		\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark					
TP15_0.0-0.2 _230925-0.0-0.2		\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark					
TP16_0.1-0.2_230925-0.1-0.2		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
TP17_0.0-0.1_230925-0.0-0.1		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
TP17_0.4-0.5_230925-0.4-0.5													\checkmark
SP1		\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark					
BH05-2.5													\checkmark
TP8-0-0.2													\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 334223

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Karin Azzam
Address	Unit 6, 7 Millenium Court, Silverwater, NSW, 2128

Sample Details	
Your Reference	A101023.0436 / Melrose Park
Number of Samples	37 Soil
Date samples received	28/09/2023
Date completed instructions received	28/09/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	06/10/2023				
Date of Issue	06/10/2023				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/	EC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Amanda Chui, Air Toxics Team Leader Diego Bigolin, Inorganics Supervisor Liam Timmins, Organics Supervisor Loren Bardwell, Development Chemist Priya Samarawickrama, Senior Chemist Steven Luong, Senior Chemist Tim Toll, Chemist (FAS) <u>Authorised By</u>

Nancy Zhang, Laboratory Manager

VOCs in soil				
Our Reference		334223-11	334223-20	334223-26
Your Reference	UNITS	TP1_0.1- 0.2_230925	TP7_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date Extracted	-	29/09/2023	29/09/2023	29/09/2023
Date Analysed	-	03/10/2023	03/10/2023	03/10/2023
Dichlorodifluoromethane	mg/kg	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1
chloroform	mg/kg	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1

VOCs in soil				
Our Reference		334223-11	334223-20	334223-26
Your Reference	UNITS	TP1_0.1- 0.2_230925	TP7_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
chlorobenzene	mg/kg	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1
bromoform	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
styrene	mg/kg	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1
Surrogate Dibromofluoromethane	%	98	98	98
Surrogate aaa-Trifluorotoluene	%	79	66	76
<i>Surrogate</i> Toluene-d ₈	%	99	100	99
Surrogate 4-Bromofluorobenzene	%	98	99	98

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334223-2	334223-4	334223-6	334223-9	334223-11
Your Reference	UNITS	BH02_1.5	BH04_1.0	BH06_1.0	BH09_1.0	TP1_0.1- 0.2_230925
Depth		1.5	1.0	1.0	1.0	0.1-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	80	73	68	72	79

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334223-13	334223-14	334223-16	334223-18	334223-19
Your Reference	UNITS	TP2_0.1- 0.2_230925	TP3_0.0- 0.2_230925	TP4_0.0- 0.2_230925	TP5_0.0- 0.2_230925	TP6_0.0- 0.2_230925
Depth		0.1-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	04/10/2023	04/10/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	05/10/2023	05/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	74	73	81	71	76

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334223-20	334223-22	334223-23	334223-25	334223-26
Your Reference	UNITS	TP7_0.0- 0.2_230925	TP8_0.0- 0.2_230925	TP9_0.1- 0.2_230925	TP10_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.0-0.2	0.0-0.2	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	66	81	73	71	76
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		334223-27	334223-28	334223-29	334223-30	334223-31
	UNITS	334223-27 TP11_0.3- 0.4_230925	334223-28 TP12_0.0- 0.1_230925	334223-29 TP13_0.1- 0.2_230925	334223-30 TP14_0.0- 0.2_230925	334223-31 TP15_0.0-0.2 _230925
Our Reference	UNITS	TP11_0.3-	TP12_0.0-	TP13_0.1-	TP14_0.0-	TP15_0.0-0.2
Our Reference Your Reference	UNITS	TP11_0.3- 0.4_230925	TP12_0.0- 0.1_230925	TP13_0.1- 0.2_230925	TP14_0.0- 0.2_230925	TP15_0.0-0.2 _230925
Our Reference Your Reference Depth	UNITS	TP11_0.3- 0.4_230925 0.3-0.4	TP12_0.0- 0.1_230925 0.0-0.1	TP13_0.1- 0.2_230925 0.1-0.2	TP14_0.0- 0.2_230925 0.0-0.2	TP15_0.0-0.2 _230925 0.0-0.2
Our Reference Your Reference Depth Date Sampled	UNITS -	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023	TP15_0.0-0.2 _230925 0.0-0.2 25/09/2023
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023 Soil	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023 Soil	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil	TP15_0.0-0.2 _230925 0.0-0.2 25/09/2023 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	-	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023 Soil 29/09/2023	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023 Soil 29/09/2023	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023	TP15_0.0-0.2 _230925 0.0-0.2 25/09/2023 Soil 29/09/2023
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023 Soil 29/09/2023 03/10/2023	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023 Soil 29/09/2023 03/10/2023	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 03/10/2023	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023	TP15_0.0-0.2 _230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP15_0.0-0.2 _230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$	- - mg/kg mg/kg	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25	TP15_0.0-0.2 _230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25	TP15_0.0-0.2 230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <25 <0.2	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <25 <0.2	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <25 <0.2	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <0.2	TP15_0.0-0.2 230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <25 <0.2 <0.2	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <25 <0.2 <0.2	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5	TP15_0.0-0.2 _230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <0.2 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene Toluene Ethylbenzene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP15_0.0-0.2 230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023 Soil 29/09/2023 03/10/2023 <25 <25 <25 <25 <25 <0.2 <0.5 <1 <2	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP15_0.0-0.2 _230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP11_0.3- 0.4_230925 0.3-0.4 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP12_0.0- 0.1_230925 0.0-0.1 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP13_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP14_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25	TP15_0.0-0.2 _230925 0.0-0.2 25/09/2023 Soil 29/09/2023 03/10/2023 <25

vTRH(C6-C10)/BTEXN in Soil							
Our Reference		334223-32	334223-33	334223-35			
Your Reference	UNITS	TP16_0.1- 0.2_230925	TP17_0.0- 0.1_230925	SP1			
Depth		0.1-0.2	0.0-0.1	-			
Date Sampled		25/09/2023	25/09/2023	25/09/2023			
Type of sample		Soil	Soil	Soil			
Date extracted	-	29/09/2023	29/09/2023	29/09/2023			
Date analysed	-	03/10/2023	03/10/2023	03/10/2023			
TRH C ₆ - C ₉	mg/kg	<25	<25	<25			
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25			
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25			
Benzene	mg/kg	<0.2	<0.2	<0.2			
Toluene	mg/kg	<0.5	<0.5	<0.5			
Ethylbenzene	mg/kg	<1	<1	<1			
m+p-xylene	mg/kg	<2	<2	<2			
o-Xylene	mg/kg	<1	<1	<1			
Naphthalene	mg/kg	<1	<1	<1			
Total +ve Xylenes	mg/kg	<1	<1	<1			
Surrogate aaa-Trifluorotoluene	%	79	61	66			
svTRH (C10-C40) in Soil							
---	--	--	--	---	---	--	--
Our Reference		334223-2	334223-4	334223-6	334223-9	334223-11	
Your Reference	UNITS	BH02_1.5	BH04_1.0	BH06_1.0	BH09_1.0	TP1_0.1- 0.2_230925	
Depth		1.5	1.0	1.0	1.0	0.1-0.2	
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023	
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023	
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50	
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100	
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100	
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50	
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50	
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50	
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100	
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100	
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50	
Surrogate o-Terphenyl	%	79	80	77	79	78	
svTRH (C10-C40) in Soil							
svTRH (C10-C40) in Soil Our Reference		334223-13	334223-14	334223-16	334223-18	334223-19	
	UNITS	334223-13 TP2_0.1- 0.2_230925	334223-14 TP3_0.0- 0.2_230925	334223-16 TP4_0.0- 0.2_230925	334223-18 TP5_0.0- 0.2_230925	334223-19 TP6_0.0- 0.2_230925	
Our Reference	UNITS	TP2_0.1-	TP3_0.0-	TP4_0.0-	TP5_0.0-	TP6_0.0-	
Our Reference Your Reference	UNITS	TP2_0.1- 0.2_230925	TP3_0.0- 0.2_230925	TP4_0.0- 0.2_230925	TP5_0.0- 0.2_230925	TP6_0.0- 0.2_230925	
Our Reference Your Reference Depth	UNITS	TP2_0.1- 0.2_230925 0.1-0.2	TP3_0.0- 0.2_230925 0.0-0.2	TP4_0.0- 0.2_230925 0.0-0.2	TP5_0.0- 0.2_230925 0.0-0.2	TP6_0.0- 0.2_230925 0.0-0.2	
Our Reference Your Reference Depth Date Sampled	UNITS -	TP2_0.1- 0.2_230925 0.1-0.2 25/09/2023	TP3_0.0- 0.2_230925 0.0-0.2 25/09/2023	TP4_0.0- 0.2_230925 0.0-0.2 25/09/2023	TP5_0.0- 0.2_230925 0.0-0.2 25/09/2023	TP6_0.0- 0.2_230925 0.0-0.2 25/09/2023	
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	TP2_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil	TP3_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil	TP4_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil	TP5_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil	TP6_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil	
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	TP2_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023	TP3_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023	TP4_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023	TP5_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023	TP6_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023	
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	TP2_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 29/09/2023	TP3_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023	TP4_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023	TP5_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023	TP6_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023	
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	- - mg/kg	TP2_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50	TP3_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50	TP4_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50	TP5_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50	TP6_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50	
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	- - mg/kg mg/kg	TP2_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50 <100	TP3_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50 <100	TP4_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50 <100	TP5_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50 <100	TP6_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50 <100	
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	- - mg/kg mg/kg mg/kg	TP2_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50 <100 190	TP3_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50 <100 <100	TP4_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50 <100 <100	TP5_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50 <100 150	TP6_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 <50 <100 <100	
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C10 - C14TRH C15 - C28TRH C29 - C36Total +ve TRH (C10-C36)	- - mg/kg mg/kg mg/kg mg/kg	TP2_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 <50 <100 190 190	TP3_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50 <100 <100 <50	TP4_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50 <100 <100 <50	TP5_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50	TP6_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50	
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C10 - C14TRH C15 - C28TRH C29 - C36Total +ve TRH (C10-C36)TRH >C10 - C16	- - mg/kg mg/kg mg/kg mg/kg mg/kg	TP2_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 <50 <100 190 190 290	TP3_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50 <100 <100 <50 <50 <50	TP4_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50 <100 <100 <50 <50 <50	TP5_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50 <100 150 150 250 <50	TP6_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50	
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C_{10} -C_{16}TRH >C_{10} - C_{16} less Naphthalene (F2)	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP2_0.1- 0.2_230925 0.1-0.2 25/09/2023 Soil 29/09/2023 <50 <100 190 190 <50 <50 <50 <50	TP3_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50 <100 <100 <100 <50 <50 <50 <50	TP4_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50	TP5_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 29/09/2023 4 4 4 500 4 100 150 150 4 4 500 4 500 4 500 500 4 500 500 500 500	TP6_0.0- 0.2_230925 0.0-0.2 25/09/2023 Soil 29/09/2023 <50	

%

80

Surrogate o-Terphenyl

78

79

80

78

svTRH (C10-C40) in Soil						
Our Reference		334223-20	334223-22	334223-23	334223-25	334223-26
Your Reference	UNITS	TP7_0.0- 0.2_230925	TP8_0.0- 0.2_230925	TP9_0.1- 0.2_230925	TP10_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.0-0.2	0.0-0.2	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	30/09/2023	30/09/2023	30/09/2023
TRH C ₁₀ - C ₁₄	mg/kg	63	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	120	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	140	130	100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	320	130	100	<50	<50
TRH >C10 -C16	mg/kg	57	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	57	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	190	160	120	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	350	160	120	<50	<50
Surrogate o-Terphenyl	%	79	79	78	78	77
svTRH (C10-C40) in Soil						
Our Reference		334223-27	334223-28	334223-29	334223-30	334223-31
Your Reference	UNITS	TP11_0.3- 0.4_230925	TP12_0.0- 0.1_230925	TP13_0.1- 0.2_230925	TP14_0.0- 0.2_230925	TP15_0.0-0.2 _230925
Depth		0.3-0.4	0.0-0.1	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	30/09/2023	30/09/2023	30/09/2023	30/09/2023	30/09/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50

<100

<100

<50

81

mg/kg

mg/kg

mg/kg

%

<100

<100

<50

79

<100

<100

<50

77

<100

<100

<50

77

TRH >C16 -C34

TRH >C34 -C40

Total +ve TRH (>C10-C40)

Surrogate o-Terphenyl

<100

<100

<50

78

svTRH (C10-C40) in Soil				
Our Reference		334223-32	334223-33	334223-35
Your Reference	UNITS	TP16_0.1- 0.2_230925	TP17_0.0- 0.1_230925	SP1
Depth		0.1-0.2	0.0-0.1	-
Date Sampled		25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	30/09/2023	30/09/2023	30/09/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	77	77	76

PAHs in Soil						
Our Reference		334223-2	334223-4	334223-6	334223-9	334223-11
Your Reference	UNITS	BH02_1.5	BH04_1.0	BH06_1.0	BH09_1.0	TP1_0.1- 0.2_230925
Depth		1.5	1.0	1.0	1.0	0.1-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.7
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.6
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.9
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.5
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.5
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	4.3
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	0.6
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	0.7
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	0.7
Surrogate p-Terphenyl-d14	%	96	96	95	95	98

PAHs in Soil						
Our Reference		334223-13	334223-14	334223-16	334223-18	334223-19
Your Reference	UNITS	TP2_0.1- 0.2_230925	TP3_0.0- 0.2_230925	TP4_0.0- 0.2_230925	TP5_0.0- 0.2_230925	TP6_0.0- 0.2_230925
Depth		0.1-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.2	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.9	0.6	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.2	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	2.0	1	0.2	0.2	<0.1
Pyrene	mg/kg	1.8	0.8	0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	1.0	0.4	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.8	0.4	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	2.2	0.8	0.2	0.2	<0.2
Benzo(a)pyrene	mg/kg	1.4	0.5	0.1	0.1	0.07
Indeno(1,2,3-c,d)pyrene	mg/kg	1	0.3	0.1	0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.6	0.2	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	12	5.2	0.69	0.74	0.07
Benzo(a)pyrene TEQ calc (zero)	mg/kg	2.0	0.6	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	2.0	0.7	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	2.0	0.7	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	96	93	96	97	95

PAHs in Soil						
Our Reference		334223-20	334223-22	334223-23	334223-25	334223-26
Your Reference	UNITS	TP7_0.0- 0.2_230925	TP8_0.0- 0.2_230925	TP9_0.1- 0.2_230925	TP10_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.0-0.2	0.0-0.2	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	0.2	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.3	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.1	<0.05	0.1	0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.1	<0.05	0.4	0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	95	96	94	93	90

PAHs in Soil						
Our Reference		334223-27	334223-28	334223-29	334223-30	334223-31
Your Reference	UNITS	TP11_0.3- 0.4_230925	TP12_0.0- 0.1_230925	TP13_0.1- 0.2_230925	TP14_0.0- 0.2_230925	TP15_0.0-0.2 _230925
Depth		0.3-0.4	0.0-0.1	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.3	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	1.1	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	94	101	93	96	96

PAHs in Soil				
Our Reference		334223-32	334223-33	334223-35
Your Reference	UNITS	TP16_0.1- 0.2_230925	TP17_0.0- 0.1_230925	SP1
Depth		0.1-0.2	0.0-0.1	-
Date Sampled		25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	03/10/2023	03/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.8	<0.1	<0.1
Anthracene	mg/kg	0.2	<0.1	<0.1
Fluoranthene	mg/kg	1.2	<0.1	<0.1
Pyrene	mg/kg	1.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.5	<0.1	<0.1
Chrysene	mg/kg	0.4	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	1	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.55	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.4	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	<0.1	<0.1
Total +ve PAH's	mg/kg	6.8	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.8	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.8	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.9	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	95	101	98

Organochlorine Pesticides in soil						
Our Reference		334223-2	334223-4	334223-6	334223-9	334223-11
Your Reference	UNITS	BH02_1.5	BH04_1.0	BH06_1.0	BH09_1.0	TP1_0.1- 0.2_230925
Depth		1.5	1.0	1.0	1.0	0.1-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	96	95	96	100

Organochlorine Pesticides in soil						
Our Reference		334223-13	334223-14	334223-16	334223-18	334223-19
Your Reference	UNITS	TP2_0.1- 0.2_230925	TP3_0.0- 0.2_230925	TP4_0.0- 0.2_230925	TP5_0.0- 0.2_230925	TP6_0.0- 0.2_230925
Depth		0.1-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	94	91	94	96	95

Organochlorine Pesticides in soil						
Our Reference		334223-20	334223-22	334223-23	334223-25	334223-26
Your Reference	UNITS	TP7_0.0- 0.2_230925	TP8_0.0- 0.2_230925	TP9_0.1- 0.2_230925	TP10_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.0-0.2	0.0-0.2	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	92	93	95	95	91

Organochlorine Pesticides in soil						
Our Reference		334223-27	334223-28	334223-29	334223-30	334223-31
Your Reference	UNITS	TP11_0.3- 0.4_230925	TP12_0.0- 0.1_230925	TP13_0.1- 0.2_230925	TP14_0.0- 0.2_230925	TP15_0.0-0.2 _230925
Depth		0.3-0.4	0.0-0.1	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	105	97	96	97

Organochlorine Pesticides in soil				
Our Reference		334223-32	334223-33	334223-35
Your Reference	UNITS	TP16_0.1- 0.2_230925	TP17_0.0- 0.1_230925	SP1
Depth		0.1-0.2	0.0-0.1	-
Date Sampled		25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	03/10/2023	03/10/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	102	98

Organophosphorus Pesticides in Soil						
Our Reference		334223-2	334223-4	334223-6	334223-9	334223-11
Your Reference	UNITS	BH02_1.5	BH04_1.0	BH06_1.0	BH09_1.0	TP1_0.1- 0.2_230925
Depth		1.5	1.0	1.0	1.0	0.1-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	96	95	96	100

Organophosphorus Pesticides in Soil						
Our Reference		334223-13	334223-14	334223-16	334223-18	334223-19
Your Reference	UNITS	TP2_0.1- 0.2_230925	TP3_0.0- 0.2_230925	TP4_0.0- 0.2_230925	TP5_0.0- 0.2_230925	TP6_0.0- 0.2_230925
Depth		0.1-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	94	91	94	96	95

Organophosphorus Pesticides in Soil					_	
Our Reference		334223-20	334223-22	334223-23	334223-25	334223-26
Your Reference	UNITS	TP7_0.0- 0.2_230925	TP8_0.0- 0.2_230925	TP9_0.1- 0.2_230925	TP10_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.0-0.2	0.0-0.2	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	92	93	95	95	91

Organophosphorus Pesticides in Soil						
Our Reference		334223-27	334223-28	334223-29	334223-30	334223-31
Your Reference	UNITS	TP11_0.3- 0.4_230925	TP12_0.0- 0.1_230925	TP13_0.1- 0.2_230925	TP14_0.0- 0.2_230925	TP15_0.0-0.2 _230925
Depth		0.3-0.4	0.0-0.1	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	105	97	96	97

Organophosphorus Pesticides in Soil				
Our Reference		334223-32	334223-33	334223-35
Your Reference	UNITS	TP16_0.1- 0.2_230925	TP17_0.0- 0.1_230925	SP1
Depth		0.1-0.2	0.0-0.1	-
Date Sampled		25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	03/10/2023	03/10/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	102	98

PCBs in Soil						
Our Reference		334223-2	334223-4	334223-6	334223-9	334223-11
Your Reference	UNITS	BH02_1.5	BH04_1.0	BH06_1.0	BH09_1.0	TP1_0.1- 0.2_230925
Depth		1.5	1.0	1.0	1.0	0.1-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	96	95	96	100

PCBs in Soil						
Our Reference		334223-13	334223-14	334223-16	334223-18	334223-19
Your Reference	UNITS	TP2_0.1- 0.2_230925	TP3_0.0- 0.2_230925	TP4_0.0- 0.2_230925	TP5_0.0- 0.2_230925	TP6_0.0- 0.2_230925
Depth		0.1-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	94	91	94	96	95

PCBs in Soil						
Our Reference		334223-20	334223-22	334223-23	334223-25	334223-26
Your Reference	UNITS	TP7_0.0- 0.2_230925	TP8_0.0- 0.2_230925	TP9_0.1- 0.2_230925	TP10_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.0-0.2	0.0-0.2	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	92	93	95	95	91

PCBs in Soil						
Our Reference		334223-27	334223-28	334223-29	334223-30	334223-31
Your Reference	UNITS	TP11_0.3- 0.4_230925	TP12_0.0- 0.1_230925	TP13_0.1- 0.2_230925	TP14_0.0- 0.2_230925	TP15_0.0-0.2 _230925
Depth		0.3-0.4	0.0-0.1	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	105	97	96	97

PCBs in Soil				
Our Reference		334223-32	334223-33	334223-35
Your Reference	UNITS	TP16_0.1- 0.2_230925	TP17_0.0- 0.1_230925	SP1
Depth		0.1-0.2	0.0-0.1	-
Date Sampled		25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	03/10/2023	03/10/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	102	98

Acid Extractable metals in soil						
Our Reference		334223-2	334223-4	334223-6	334223-9	334223-11
Your Reference	UNITS	BH02_1.5	BH04_1.0	BH06_1.0	BH09_1.0	TP1_0.1- 0.2_230925
Depth		1.5	1.0	1.0	1.0	0.1-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	<4	11	12	11	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	26	13	15	16
Copper	mg/kg	14	9	29	28	35
Lead	mg/kg	18	25	21	33	53
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	2	1	3	9
Zinc	mg/kg	6	9	11	16	94

Acid Extractable metals in soil						
Our Reference		334223-13	334223-14	334223-16	334223-18	334223-19
Your Reference	UNITS	TP2_0.1- 0.2_230925	TP3_0.0- 0.2_230925	TP4_0.0- 0.2_230925	TP5_0.0- 0.2_230925	TP6_0.0- 0.2_230925
Depth		0.1-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	9	6	11	11	10
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	21	18	27	26	26
Copper	mg/kg	28	17	19	31	13
Lead	mg/kg	440	37	62	150	46
Mercury	mg/kg	0.2	<0.1	<0.1	0.2	<0.1
Nickel	mg/kg	10	11	5	5	5
Zinc	mg/kg	180	72	91	88	41

Acid Extractable metals in soil						
Our Reference		334223-20	334223-22	334223-23	334223-25	334223-26
Your Reference	UNITS	TP7_0.0- 0.2_230925	TP8_0.0- 0.2_230925	TP9_0.1- 0.2_230925	TP10_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.0-0.2	0.0-0.2	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	18	12	20	8	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	30	27	34	22	21
Copper	mg/kg	31	32	35	24	17
Lead	mg/kg	110	69	46	84	35
Mercury	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Nickel	mg/kg	12	12	5	7	5
Zinc	mg/kg	130	200	87	36	16

Acid Extractable metals in soil						
Our Reference		334223-27	334223-28	334223-29	334223-30	334223-31
Your Reference	UNITS	TP11_0.3- 0.4_230925	TP12_0.0- 0.1_230925	TP13_0.1- 0.2_230925	TP14_0.0- 0.2_230925	TP15_0.0-0.2 _230925
Depth		0.3-0.4	0.0-0.1	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	9	7	8	10	9
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	24	19	24	24	20
Copper	mg/kg	33	18	20	19	25
Lead	mg/kg	23	42	39	35	35
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	6	5	5	7
Zinc	mg/kg	17	36	150	20	28
Iron	mg/kg	66,000	[NA]	[NA]	[NA]	[NA]

Acid Extractable metals in soil				
Our Reference		334223-32	334223-33	334223-35
Your Reference	UNITS	TP16_0.1- 0.2_230925	TP17_0.0- 0.1_230925	SP1
Depth		0.1-0.2	0.0-0.1	-
Date Sampled		25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	03/10/2023	03/10/2023	03/10/2023
Date analysed	-	04/10/2023	04/10/2023	04/10/2023
Arsenic	mg/kg	11	8	4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	24	20	2
Copper	mg/kg	41	24	<1
Lead	mg/kg	100	31	2
Mercury	mg/kg	0.2	<0.1	<0.1
Nickel	mg/kg	7	7	<1
Zinc	mg/kg	140	27	5

Misc Soil - Inorg				
Our Reference		334223-11	334223-20	334223-26
Your Reference	UNITS	TP1_0.1- 0.2_230925	TP7_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023
Total Cyanide	mg/kg	<0.5	<0.5	<0.5
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5

Misc Inorg - Soil		
Our Reference		334223-27
Your Reference	UNITS	TP11_0.3- 0.4_230925
Depth		0.3-0.4
Date Sampled		25/09/2023
Type of sample		Soil
Date prepared	-	29/09/2023
Date analysed	-	29/09/2023
pH 1:5 soil:water	pH Units	5.1
Electrical Conductivity 1:5 soil:water	μS/cm	42
Total Organic Carbon in soil/solids	mg/kg	7,400

CEC		
Our Reference		334223-27
Your Reference	UNITS	TP11_0.3- 0.4_230925
Depth		0.3-0.4
Date Sampled		25/09/2023
Type of sample		Soil
Date prepared	-	05/10/2023
Date analysed	-	05/10/2023
Exchangeable Ca	meq/100g	2.4
Exchangeable K	meq/100g	0.2
Exchangeable Mg	meq/100g	2.5
Exchangeable Na	meq/100g	0.2
Cation Exchange Capacity	meq/100g	5.2

Moisture						
Our Reference		334223-2	334223-4	334223-6	334223-9	334223-11
Your Reference	UNITS	BH02_1.5	BH04_1.0	BH06_1.0	BH09_1.0	TP1_0.1- 0.2_230925
Depth		1.5	1.0	1.0	1.0	0.1-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Moisture	%	13	17	13	16	14
Moisture			1	•		•
Our Reference		334223-13	334223-14	334223-16	334223-18	334223-19
Your Reference	UNITS	TP2_0.1- 0.2_230925	TP3_0.0- 0.2_230925	TP4_0.0- 0.2_230925	TP5_0.0- 0.2_230925	TP6_0.0- 0.2_230925
Depth		0.1-0.2	0.0-0.2	0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Moisture	%	17	22	12	15	16
Moisture						
Our Reference		334223-20	334223-22	334223-23	334223-25	334223-26
Your Reference	UNITS	TP7_0.0- 0.2_230925	TP8_0.0- 0.2_230925	TP9_0.1- 0.2_230925	TP10_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.0-0.2	0.0-0.2	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Moisture	%	14	17	22	22	19
Moisture						
Our Reference		334223-27	334223-28	334223-29	334223-30	334223-31
Your Reference	UNITS	TP11_0.3- 0.4_230925	TP12_0.0- 0.1_230925	TP13_0.1- 0.2_230925	TP14_0.0- 0.2_230925	TP15_0.0-0.2 _230925
Depth		0.3-0.4	0.0-0.1	0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/09/2023	29/09/2023	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023	03/10/2023	03/10/2023
Moisture	%	28	19	15	20	23

Moisture				
Our Reference		334223-32	334223-33	334223-35
Your Reference	UNITS	TP16_0.1- 0.2_230925	TP17_0.0- 0.1_230925	SP1
Depth		0.1-0.2	0.0-0.1	-
Date Sampled		25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	03/10/2023	03/10/2023	03/10/2023
Moisture	%	20	15	18

PFAS in Soils Short				
Our Reference		334223-11	334223-20	334223-26
Your Reference	UNITS	TP1_0.1- 0.2_230925	TP7_0.0- 0.2_230925	TP11_0.0- 0.2_230925
Depth		0.1-0.2	0.0-0.2	0.0-0.2
Date Sampled		25/09/2023	25/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	29/09/2023	29/09/2023	29/09/2023
Date analysed	-	29/09/2023	29/09/2023	29/09/2023
Perfluorohexanesulfonic acid - PFHxS	µg/kg	0.2	0.5	0.7
Perfluorooctanesulfonic acid PFOS	µg/kg	5.5	7.5	0.5
Perfluorooctanoic acid PFOA	µg/kg	0.3	1.0	0.2
6:2 FTS	µg/kg	<0.1	<0.1	<0.1
8:2 FTS	µg/kg	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	102	98	101
Surrogate ¹³ C ₂ PFOA	%	105	110	106
Extracted ISTD ¹⁸ O ₂ PFHxS	%	98	89	92
Extracted ISTD ¹³ C ₄ PFOS	%	97	79	93
Extracted ISTD ¹³ C ₄ PFOA	%	98	82	95
Extracted ISTD ¹³ C ₂ 6:2FTS	%	83	67	79
Extracted ISTD ¹³ C ₂ 8:2FTS	%	92	43	88
Total Positive PFHxS & PFOS	µg/kg	5.8	8.0	1.2
Total Positive PFOS & PFOA	µg/kg	5.8	8.5	0.7
Total Positive PFAS	µg/kg	6.0	9.1	1.4

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
INORG-137	Total Carbon Nitrogen Sulfur by high temperature catalytic combustion with IR detection.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC- MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore="" total=""> </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Method ID	Methodology Summary
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALI	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334223-20
Date Extracted	-			29/09/2023	11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date Analysed	-			03/10/2023	11	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Dichlorodifluoromethane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
Chloromethane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
Vinyl Chloride	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
Bromomethane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
Chloroethane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	mg/kg	1	Org-023	<1	11	<1	<1	0	138	131
cis-1,2-dichloroethene	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
bromochloromethane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
chloroform	mg/kg	1	Org-023	<1	11	<1	<1	0	126	119
2,2-dichloropropane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	mg/kg	1	Org-023	<1	11	<1	<1	0	126	119
1,1,1-trichloroethane	mg/kg	1	Org-023	<1	11	<1	<1	0	127	119
1,1-dichloropropene	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
Cyclohexane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
carbon tetrachloride	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	<0.2	11	<0.2	<0.2	0	132	125
dibromomethane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
trichloroethene	mg/kg	1	Org-023	<1	11	<1	<1	0	117	108
bromodichloromethane	mg/kg	1	Org-023	<1	11	<1	<1	0	131	125
trans-1,3-dichloropropene	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	11	<0.5	<0.5	0	128	119
1,3-dichloropropane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
dibromochloromethane	mg/kg	1	Org-023	<1	11	<1	<1	0	132	125
1,2-dibromoethane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
tetrachloroethene	mg/kg	1	Org-023	<1	11	<1	<1	0	123	110
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
chlorobenzene	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	11	<1	<1	0	126	115
bromoform	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	<2	11	<2	<2	0	127	115
styrene	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	<1	11	<1	<1	0	[NT]	[NT]

QUALITY CONTROL: VOCs in soil						Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334223-20		
o-Xylene	mg/kg	1	Org-023	<1	11	<1	<1	0	129	119		
1,2,3-trichloropropane	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
isopropylbenzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
bromobenzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
n-propyl benzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
2-chlorotoluene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
4-chlorotoluene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
1,3,5-trimethyl benzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
tert-butyl benzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
1,2,4-trimethyl benzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
1,3-dichlorobenzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
sec-butyl benzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
1,4-dichlorobenzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
4-isopropyl toluene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
1,2-dichlorobenzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
n-butyl benzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
1,2,4-trichlorobenzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
hexachlorobutadiene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
1,2,3-trichlorobenzene	mg/kg	1	Org-023	<1	11	<1	<1	0		[NT]		
Surrogate Dibromofluoromethane	%		Org-023	98	11	98	99	1	98	99		
Surrogate aaa-Trifluorotoluene	%		Org-023	77	11	79	72	9	82	73		
Surrogate Toluene-d ₈	%		Org-023	99	11	99	101	2	100	100		
Surrogate 4-Bromofluorobenzene	%		Org-023	97	11	98	98	0	100	98		

QUAL	TY CONTRC	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date Extracted	-			[NT]	26	29/09/2023	29/09/2023			[NT]
Date Analysed	-			[NT]	26	03/10/2023	03/10/2023			[NT]
Dichlorodifluoromethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Chloromethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Vinyl Chloride	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Bromomethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Chloroethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,1-dichloroethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
cis-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
bromochloromethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
chloroform	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
2,2-dichloropropane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,2-dichloroethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,1,1-trichloroethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,1-dichloropropene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Cyclohexane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
carbon tetrachloride	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	26	<0.2	<0.2	0		[NT]
dibromomethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,2-dichloropropane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
trichloroethene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
bromodichloromethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
trans-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	26	<0.5	<0.5	0		[NT]
1,3-dichloropropane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
dibromochloromethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,2-dibromoethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
tetrachloroethene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
chlorobenzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
bromoform	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	26	<2	<2	0		[NT]
styrene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
QUALIT	Y CONTRC	L: VOCs	in soil			Du	ıplicate		Spike Re	ecovery %
----------------------------------	----------	---------	---------	-------	----	------	----------	-----	----------	-----------
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
isopropylbenzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
bromobenzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
n-propyl benzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
2-chlorotoluene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
4-chlorotoluene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
tert-butyl benzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
sec-butyl benzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
4-isopropyl toluene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
n-butyl benzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
hexachlorobutadiene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Surrogate Dibromofluoromethane	%		Org-023	[NT]	26	98	98	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	26	76	71	7		[NT]
Surrogate Toluene-d ₈	%		Org-023	[NT]	26	99	100	1		[NT]
Surrogate 4-Bromofluorobenzene	%		Org-023	[NT]	26	98	99	1		[NT]

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334223-20
Date extracted	-			04/10/2023	2	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-			05/10/2023	2	03/10/2023	03/10/2023		03/10/2023	03/10/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	2	<25	<25	0	128	118
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	2	<25	<25	0	128	118
Benzene	mg/kg	0.2	Org-023	<0.2	2	<0.2	<0.2	0	132	125
Toluene	mg/kg	0.5	Org-023	<0.5	2	<0.5	<0.5	0	128	119
Ethylbenzene	mg/kg	1	Org-023	<1	2	<1	<1	0	126	115
m+p-xylene	mg/kg	2	Org-023	<2	2	<2	<2	0	127	115
o-Xylene	mg/kg	1	Org-023	<1	2	<1	<1	0	129	119
Naphthalene	mg/kg	1	Org-023	<1	2	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	102	2	80	72	11	82	73

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334223-32
Date extracted	-			[NT]	11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-			[NT]	11	03/10/2023	03/10/2023		03/10/2023	03/10/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	11	<25	<25	0	111	117
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	11	<25	<25	0	111	117
Benzene	mg/kg	0.2	Org-023	[NT]	11	<0.2	<0.2	0	115	124
Toluene	mg/kg	0.5	Org-023	[NT]	11	<0.5	<0.5	0	111	117
Ethylbenzene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	109	114
m+p-xylene	mg/kg	2	Org-023	[NT]	11	<2	<2	0	110	114
o-Xylene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	111	117
Naphthalene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	11	79	72	9	73	73

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	26	29/09/2023	29/09/2023			[NT]
Date analysed	-			[NT]	26	03/10/2023	03/10/2023			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	26	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	26	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	26	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	26	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	26	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	26	76	71	7		[NT]

QUALITY CO	extracted - /					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334223-20
Date extracted	-			29/09/2023	2	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-			30/09/2023	2	29/09/2023	29/09/2023		29/09/2023	29/09/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	2	<50	<50	0	110	96
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	2	<100	<100	0	110	100
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	2	<100	<100	0	129	#
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	2	<50	<50	0	110	96
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	2	<100	<100	0	110	100
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	2	<100	<100	0	129	#
Surrogate o-Terphenyl	%		Org-020	81	2	79	80	1	92	85

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334223-32
Date extracted	-			[NT]	11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-			[NT]	11	29/09/2023	29/09/2023		30/09/2023	30/09/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	11	<50	<50	0	105	105
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	11	<100	<100	0	109	117
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	11	<100	110	10	105	105
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	11	<50	<50	0	105	105
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	11	<100	<100	0	109	117
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	11	<100	120	18	105	105
Surrogate o-Terphenyl	%		Org-020	[NT]	11	78	78	0	89	88

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	26	29/09/2023	29/09/2023		[NT]	
Date analysed	-			[NT]	26	30/09/2023	30/09/2023		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	26	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	26	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	26	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	26	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	26	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	26	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-020	[NT]	26	77	76	1	[NT]	

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334223-20
Date extracted	-			29/09/2023	2	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-			29/09/2023	2	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	92	92
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	105	101
Fluorene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	95	93
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	100	94
Anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	102	96
Pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	99	100
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	93	83
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	2	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	2	<0.05	<0.05	0	98	136
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	96	2	96	98	2	102	97

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334223-32
Date extracted	-				11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-				11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Naphthalene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	97	92
Acenaphthylene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	107	101
Fluorene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	93	92
Phenanthrene	mg/kg	0.1	Org-022/025		11	0.3	0.3	0	102	61
Anthracene	mg/kg	0.1	Org-022/025		11	<0.1	0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025		11	0.7	0.8	13	104	130
Pyrene	mg/kg	0.1	Org-022/025		11	0.6	0.8	29	103	66
Benzo(a)anthracene	mg/kg	0.1	Org-022/025		11	0.3	0.4	29	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025		11	0.3	0.4	29	89	71
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025		11	0.9	1	11	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025		11	0.5	0.67	29	116	95
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025		11	0.5	0.6	18	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025		11	0.3	0.5	50	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025		11	98	98	0	101	96

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	26	29/09/2023	29/09/2023			[NT]
Date analysed	-			[NT]	26	29/09/2023	29/09/2023			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	26	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	26	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	26	90	91	1		[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334223-20
Date extracted	-			29/09/2023	2	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-			29/09/2023	2	29/09/2023	29/09/2023		29/09/2023	29/09/2023
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	96	98
НСВ	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	92	96
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	81	77
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	81	91
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	92	97
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	107	105
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	116	114
Endrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	76	82
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	84	88
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	100	81
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	97	2	95	97	2	101	96

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334223-32
Date extracted	-			[NT]	11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-			[NT]	11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	96	92
НСВ	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	92	87
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	75	75
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	91	87
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	94	98
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	111	107
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	108	101
Endrin	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	66	70
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	82	83
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	100	100
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	11	100	98	2	101	96

QUALITY CONTI	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	26	29/09/2023	29/09/2023			[NT]
Date analysed	-			[NT]	26	29/09/2023	29/09/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	26	91	96	5		[NT]

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334223-20
Date extracted	-			29/09/2023	2	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-			29/09/2023	2	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	105	111
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	91	97
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	79	134
Malathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	103	138
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	94	102
Fenthion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	82	133
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	88	121
Phosalone	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	97	2	95	97	2	101	96

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334223-32
Date extracted	-				11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-				11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Dichlorvos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	105	99
Mevinphos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	97	93
Fenitrothion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	91	96
Malathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	112	112
Chlorpyriphos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	98	95
Fenthion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	99	111
Bromophos-ethyl	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	100	115
Phosalone	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		11	100	98	2	101	96

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				26	29/09/2023	29/09/2023			[NT]
Date analysed	-				26	29/09/2023	29/09/2023			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		26	91	96	5		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334223-20
Date extracted	-			29/09/2023	2	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-			29/09/2023	2	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	107	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	97	2	95	97	2	101	96

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334223-32
Date extracted	-			[NT]	11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-			[NT]	11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	113	100
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	[NT]	11	100	98	2	101	96

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	26	29/09/2023	29/09/2023			
Date analysed	-			[NT]	26	29/09/2023	29/09/2023			
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	26	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	26	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	26	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	26	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	26	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	26	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	26	<0.1	<0.1	0		
Surrogate TCMX	%		Org-021	[NT]	26	91	96	5		

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334223-20
Date prepared	-			03/10/2023	2	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			04/10/2023	2	04/10/2023	04/10/2023		04/10/2023	04/10/2023
Arsenic	mg/kg	4	Metals-020	<4	2	<4	5	22	126	#
Cadmium	mg/kg	0.4	Metals-020	<0.4	2	<0.4	<0.4	0	120	113
Chromium	mg/kg	1	Metals-020	<1	2	7	8	13	124	127
Copper	mg/kg	1	Metals-020	<1	2	14	14	0	121	#
Lead	mg/kg	1	Metals-020	<1	2	18	19	5	124	114
Mercury	mg/kg	0.1	Metals-021	<0.1	2	<0.1	<0.1	0	103	102
Nickel	mg/kg	1	Metals-020	<1	2	<1	<1	0	121	119
Zinc	mg/kg	1	Metals-020	<1	2	6	7	15	129	#
Iron	mg/kg	10	Metals-020	<10	[NT]	[NT]	[NT]	[NT]	109	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	334223-32
Date prepared	-			[NT]	11	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Date analysed	-			[NT]	11	04/10/2023	04/10/2023		04/10/2023	04/10/2023
Arsenic	mg/kg	4	Metals-020	[NT]	11	6	6	0	129	120
Cadmium	mg/kg	0.4	Metals-020	[NT]	11	<0.4	<0.4	0	121	107
Chromium	mg/kg	1	Metals-020	[NT]	11	16	19	17	116	119
Copper	mg/kg	1	Metals-020	[NT]	11	35	30	15	124	123
Lead	mg/kg	1	Metals-020	[NT]	11	53	52	2	117	100
Mercury	mg/kg	0.1	Metals-021	[NT]	11	<0.1	<0.1	0	89	99
Nickel	mg/kg	1	Metals-020	[NT]	11	9	9	0	123	114
Zinc	mg/kg	1	Metals-020	[NT]	11	94	110	16	129	#

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	26	03/10/2023	03/10/2023			
Date analysed	-			[NT]	26	04/10/2023	04/10/2023			
Arsenic	mg/kg	4	Metals-020	[NT]	26	8	7	13		
Cadmium	mg/kg	0.4	Metals-020	[NT]	26	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	[NT]	26	21	21	0		
Copper	mg/kg	1	Metals-020	[NT]	26	17	20	16		
Lead	mg/kg	1	Metals-020	[NT]	26	35	35	0		
Mercury	mg/kg	0.1	Metals-021	[NT]	26	<0.1	<0.1	0		
Nickel	mg/kg	1	Metals-020	[NT]	26	5	5	0		
Zinc	mg/kg	1	Metals-020	[NT]	26	16	17	6	[NT]	[NT]

QUALITY	CONTROL:	Misc Soi	l - Inorg			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334223-20
Date prepared	-			29/09/2023	11	29/09/2023	29/09/2023		29/09/2023	29/09/2023
Date analysed	-			03/10/2023	11	03/10/2023	03/10/2023		03/10/2023	03/10/2023
Total Cyanide	mg/kg	0.5	Inorg-014	<0.5	11	<0.5	<0.5	0	101	83
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	11	<5	<5	0	102	102

QUALITY	CONTROL:	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			29/09/2023	[NT]		[NT]	[NT]	29/09/2023	
Date analysed	-			29/09/2023	[NT]		[NT]	[NT]	29/09/2023	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	100	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	100	
Total Organic Carbon in soil/solids	mg/kg	100	INORG-137	<100	[NT]		[NT]	[NT]	100	

QU	ALITY CONT	ROL: CE		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			05/10/2023	[NT]		[NT]	[NT]	05/10/2023	
Date analysed	-			05/10/2023	[NT]		[NT]	[NT]	05/10/2023	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	112	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	113	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	109	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	102	

QUALITY C	CONTROL: F	PFAS in S	oils Short		Duplicate Spike Recove							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334223-20		
Date prepared	-			29/09/2023	11	29/09/2023	29/09/2023		29/09/2023	29/09/2023		
Date analysed	-			29/09/2023	11	29/09/2023	29/09/2023		29/09/2023	29/09/2023		
Perfluorohexanesulfonic acid - PFHxS	µg/kg	0.1	Org-029	<0.1	11	0.2	0.3	40	109	108		
Perfluorooctanesulfonic acid PFOS	µg/kg	0.1	Org-029	<0.1	11	5.5	6.8	21	105	88		
Perfluorooctanoic acid PFOA	µg/kg	0.1	Org-029	<0.1	11	0.3	0.3	0	123	106		
6:2 FTS	µg/kg	0.1	Org-029	<0.1	11	<0.1	<0.1	0	113	111		
8:2 FTS	µg/kg	0.2	Org-029	<0.2	11	<0.2	<0.2	0	114	113		
Surrogate ¹³ C ₈ PFOS	%		Org-029	102	11	102	104	2	100	98		
Surrogate ¹³ C ₂ PFOA	%		Org-029	104	11	105	110	5	109	109		
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	100	11	98	92	6	101	92		
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	99	11	97	93	4	101	83		
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	102	11	98	95	3	96	86		
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	89	11	83	87	5	83	69		
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	91	11	92	92	0	90	55		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

PFAS_S:

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

TRH Soil C10-C40 NEPM - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 334223-20ms have caused interference.

Acid Extractable Metals in Soil:

Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

ENVIROLAB												ENVIROLAB GROUP ENVIROLAB GROUP National phone number 1300 424 344 National phone number 1300 424 344 Sydney Lab Envirolab Services 12 Ashley St, Chatswood, NSW 2067 12 0 9910 6200 E3 sydney@envirolab.com.au 12 ashley St, Chatswood, NSW 2067								
Copyright and Confid															12/	shley 5 2 9910 6	t, Chats	wood sydne	ervice NSW w@en	s 2067 virolab.com.au
Client: ADE Consul					Client Project	- t Name/Nun	ber/Site	etc (le rep	ort title):	_					Per	h Lab - I	MPL La	borato	ries	
Contact Person: Ka	arin Azzam				1					irose Pari	¢				16-1	8 Hayde 3 9317 2	en Crt, 1	lab@	,WA (5154 Jm.au
Project Mgr: Karin /	Azzam				PO No.: A101	023.0436.00	2								Met	bourne l	ab - Er	virola	b Serv	lces
Sampler: Karin Azz	ат				Envirolab Qu										25 F	lesearch	Drive,	Croyd	on So	uth, VIC 3136 @envirolab.com.au
Address: 6/7 Millen	nium Ct, Sliverwater NSW 2128				Date results (required:										laide Ofi	-			-
					Or choose: S Note: Inform Is				-		iarges a	oply			7a 1 0-0	he Para 8 7087 6	de, Nor 800 🗠	wood, l adela	SA 50 Ide@e	67 nvirolab.com.au
Phone:		Mob:	0490 072 877		Additional rep	port format:	esdat / e	quis /			_				Bris 20a	bane Of 10-20 D	fice - E	nvirola I, Bany	ib Sen	vices D 4014 envirolab.com.au
Emall:	karin.azzam@ade.group,	stephen.bo		up	Lab Commen	nts:														
															Dar Unit	win Offic 20/119	<u>:e</u> -Env Reichar	irolab dt Roa	Servio Id, Wi	es nnellie, NT 0820
	Sample Info	mation	-		1_				-	Test	s Requi	ired			1			_		Comments
'Envirolab Sample ID	Client Sample ID or Information	Depth	Date sampled	Type of sample	Combination 6 (soil)	Combination 6	(water)													Provide as much information about the sample as you can
	BH2_0.0-0.1	0.0-0.1	4.10.2023	Soil	×				_											
2	BH3_0.0-0.1	0.0-0.1	04.10.2023	Soil	×															
3	BH5_0.0-0.1	0.0-0.1	04.10.2023	Soil	×			_												
4	BH7_0.0-0.1	0.0-0.1	04.10.2023	Soil	×						_									
	BH8_0.0-0.1	0.0-0.1	04.10.2023	Soil	<u>×</u>						i								-	
6	BH9_0.0-0.1	0.0-0.1	04.10.2023	Soil	<u> </u>														_	
F	RB]	04.10.2023	Water			X													
	Please tick the box if observed	settled sedi	iment present li	n water samples is to	o be included li	n the extrac	ion and/c	r analysi:	s							-	-	•	-	
Relinquished by (Company): ADE Received by (Comp																L	ab Us	e Only		
Print Name: KARIN	AZZAM			Print Name:	ita	2						Job nun	nber: 了	\overline{S} \overline{S} \overline{C}	-06		Cooling	(ice r	ice na	ck / None
Date & Time: 5.10.2023 A 9 am Date & Time: 5				510123 1240 Tempera							ature:	प					- *	Y Broken / None		
Signature: Signature:					TAT Req - SAME day /							day <u>/ 1</u> /	2/3		·		2			

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Karin Azzam

Sample Login Details	
Your reference	A101023.0436/Melrose Park
Envirolab Reference	334606-A
Date Sample Received	05/10/2023
Date Instructions Received	13/10/2023
Date Results Expected to be Reported	20/10/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	Additional silica gel cleanup 1 sample
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	4
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	svTRH (C10-C40) in Soil Pre Clean Up	sTPH in Soil (C10-C40)-Silica	On Hold
BH2_0.0-0.1-0-0.1	\checkmark	\checkmark	
BH3_0.0-0.1-0-0.1			\checkmark
BH5_0.0-0.1-0-0.1			\checkmark
BH7_0.0-0.1-0-0.1			\checkmark
BH8_0.0-0.1-0-0.1			\checkmark
BH9_0.0-0.1-0-0.1			\checkmark
RB			\checkmark

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 334606

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Karin Azzam
Address	Unit 6, 7 Millenium Court, Silverwater, NSW, 2128

Sample Details	
Your Reference	A101023.0436/Melrose Park
Number of Samples	6 Soil, 1 Water
Date samples received	05/10/2023
Date completed instructions received	05/10/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	12/10/2023			
Date of Issue	10/10/2023			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Loren Bardwell, Development Chemist Steven Luong, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334606-1	334606-2	334606-3	334606-4	334606-5
Your Reference	UNITS	BH2_0.0-0.1	BH3_0.0-0.1	BH5_0.0-0.1	BH7_0.0-0.1	BH8_0.0-0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Date analysed	-	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	100	109	89	89	90

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		334606-6
Your Reference	UNITS	BH9_0.0-0.1
Depth		0-0.1
Date Sampled		04/10/2023
Type of sample		Soil
Date extracted	-	06/10/2023
Date analysed	-	09/10/2023
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	82

svTRH (C10-C40) in Soil						
Our Reference		334606-1	334606-2	334606-3	334606-4	334606-5
Your Reference	UNITS	BH2_0.0-0.1	BH3_0.0-0.1	BH5_0.0-0.1	BH7_0.0-0.1	BH8_0.0-0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Date analysed	-	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	88	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	240	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	370	<100	<100	100	160
Total +ve TRH (C10-C36)	mg/kg	690	<50	<50	100	160
TRH >C10 -C16	mg/kg	74	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	74	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	420	<100	<100	100	110
TRH >C ₃₄ -C ₄₀	mg/kg	200	<100	<100	<100	140
Total +ve TRH (>C10-C40)	mg/kg	690	<50	<50	100	260
Surrogate o-Terphenyl	%	95	84	85	87	84

svTRH (C10-C40) in Soil		
Our Reference		334606-6
Your Reference	UNITS	BH9_0.0-0.1
Depth		0-0.1
Date Sampled		04/10/2023
Type of sample		Soil
Date extracted	-	06/10/2023
Date analysed	-	09/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	110
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	110
Surrogate o-Terphenyl	%	86

PAHs in Soil						
Our Reference		334606-1	334606-2	334606-3	334606-4	334606-5
Your Reference	UNITS	BH2_0.0-0.1	BH3_0.0-0.1	BH5_0.0-0.1	BH7_0.0-0.1	BH8_0.0-0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Date analysed	-	07/10/2023	07/10/2023	07/10/2023	07/10/2023	07/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.6	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	1.1	0.2	0.1
Pyrene	mg/kg	0.1	<0.1	1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.4	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.4	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.7	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	0.4	0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Total +ve PAH's	mg/kg	0.4	<0.05	5.1	0.3	0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	0.6	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	0.6	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	0.7	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	103	107	110	108	102

PAHs in Soil		
Our Reference		334606-6
Your Reference	UNITS	BH9_0.0-0.1
Depth		0-0.1
Date Sampled		04/10/2023
Type of sample		Soil
Date extracted	-	06/10/2023
Date analysed	-	07/10/2023
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	105

Organochlorine Pesticides in soil						
Our Reference		334606-1	334606-2	334606-3	334606-4	334606-5
Your Reference	UNITS	BH2_0.0-0.1	BH3_0.0-0.1	BH5_0.0-0.1	BH7_0.0-0.1	BH8_0.0-0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Date analysed	-	07/10/2023	07/10/2023	07/10/2023	07/10/2023	07/10/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	104	107	102	102

Organochlorine Pesticides in soil		
Our Reference		334606-6
Your Reference	UNITS	BH9_0.0-0.1
Depth		0-0.1
Date Sampled		04/10/2023
Type of sample		Soil
Date extracted	-	06/10/2023
Date analysed	-	07/10/2023
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Mirex	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	105

Organophosphorus Pesticides in Soil						
Our Reference		334606-1	334606-2	334606-3	334606-4	334606-5
Your Reference	UNITS	BH2_0.0-0.1	BH3_0.0-0.1	BH5_0.0-0.1	BH7_0.0-0.1	BH8_0.0-0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Date analysed	-	07/10/2023	07/10/2023	07/10/2023	07/10/2023	07/10/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	104	107	102	102

Organophosphorus Pesticides in Soil		
Our Reference		334606-6
Your Reference	UNITS	BH9_0.0-0.1
Depth		0-0.1
Date Sampled		04/10/2023
Type of sample		Soil
Date extracted	-	06/10/2023
Date analysed	-	07/10/2023
Dichlorvos	mg/kg	<0.1
Mevinphos	mg/kg	<0.1
Phorate	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Disulfoton	mg/kg	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1
Parathion-Methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Fenthion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Methidathion	mg/kg	<0.1
Fenamiphos	mg/kg	<0.1
Ethion	mg/kg	<0.1
Phosalone	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Coumaphos	mg/kg	<0.1
Surrogate TCMX	%	105

PCBs in Soil						
Our Reference		334606-1	334606-2	334606-3	334606-4	334606-5
Your Reference	UNITS	BH2_0.0-0.1	BH3_0.0-0.1	BH5_0.0-0.1	BH7_0.0-0.1	BH8_0.0-0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Date analysed	-	07/10/2023	07/10/2023	07/10/2023	07/10/2023	07/10/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	104	107	102	102

PCBs in Soil		
Our Reference		334606-6
Your Reference	UNITS	BH9_0.0-0.1
Depth		0-0.1
Date Sampled		04/10/2023
Type of sample		Soil
Date extracted	-	06/10/2023
Date analysed	-	07/10/2023
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	105

Acid Extractable metals in soil						
Our Reference		334606-1	334606-2	334606-3	334606-4	334606-5
Your Reference	UNITS	BH2_0.0-0.1	BH3_0.0-0.1	BH5_0.0-0.1	BH7_0.0-0.1	BH8_0.0-0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Date analysed	-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
Arsenic	mg/kg	14	<4	16	7	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	18	11	21	18	23
Copper	mg/kg	22	4	30	23	19
Lead	mg/kg	60	6	57	46	53
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Nickel	mg/kg	7	6	14	8	6
Zinc	mg/kg	140	40	120	58	50

Acid Extractable metals in soil		
Our Reference		334606-6
Your Reference	UNITS	BH9_0.0-0.1
Depth		0-0.1
Date Sampled		04/10/2023
Type of sample		Soil
Date prepared	-	06/10/2023
Date analysed	-	06/10/2023
Arsenic	mg/kg	7
Cadmium	mg/kg	<0.4
Chromium	mg/kg	19
Copper	mg/kg	21
Lead	mg/kg	39
Mercury	mg/kg	<0.1
Nickel	mg/kg	6
Zinc	mg/kg	40

	334606-1	334606-2	334606-3	334606-4	334606-5
UNITS	BH2_0.0-0.1	BH3_0.0-0.1	BH5_0.0-0.1	BH7_0.0-0.1	BH8_0.0-0.1
	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
	04/10/2023	04/10/2023	04/10/2023	04/10/2023	04/10/2023
	Soil	Soil	Soil	Soil	Soil
-	06/10/2023	06/10/2023	06/10/2023	06/10/2023	06/10/2023
-	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023
%	15	1.5	26	28	21
	-	UNITS BH2_0.0-0.1 0-0.1 04/10/2023 Soil - 06/10/2023 - 09/10/2023	UNITS BH2_0.0-0.1 BH3_0.0-0.1 0-0.1 0-0.1 04/10/2023 04/10/2023 Soil Soil Soil Soil - 06/10/2023 06/10/2023 - 09/10/2023 09/10/2023	UNITS BH2_0.0-0.1 BH3_0.0-0.1 BH5_0.0-0.1 0-0.1 0-0.1 0-0.1 04/10/2023 04/10/2023 04/10/2023 Soil Soil Soil - 06/10/2023 06/10/2023 06/10/2023 - 09/10/2023 09/10/2023 09/10/2023	UNITS BH2_0.0-0.1 BH3_0.0-0.1 BH5_0.0-0.1 BH7_0.0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 0-0.1 04/10/2023 04/10/2023 04/10/2023 04/10/2023 04/10/2023 Soil Soil Soil Soil Soil - 06/10/2023 06/10/2023 06/10/2023 06/10/2023 - 09/10/2023 09/10/2023 09/10/2023 09/10/2023

Moisture		
Our Reference		334606-6
Your Reference	UNITS	BH9_0.0-0.1
Depth		0-0.1
Date Sampled		04/10/2023
Type of sample		Soil
Date prepared	-	06/10/2023
Date analysed	-	09/10/2023
Moisture	%	28

vTRH(C6-C10)/BTEXN in Water		
Our Reference		334606-7
Your Reference	UNITS	RB
Depth		-
Date Sampled		04/10/2023
Type of sample		Water
Date extracted	-	06/10/2023
Date analysed	-	09/10/2023
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	105
Surrogate Toluene-d8	%	101
Surrogate 4-Bromofluorobenzene	%	102
svTRH (C10-C40) in Water		
--	-------	------------
Our Reference		334606-7
Your Reference	UNITS	RB
Depth		-
Date Sampled		04/10/2023
Type of sample		Water
Date extracted	-	06/10/2023
Date analysed	-	07/10/2023
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	130
TRH C ₂₉ - C ₃₆	µg/L	<100
Total +ve TRH (C10-C36)	µg/L	130
TRH >C ₁₀ - C ₁₆	µg/L	110
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	110
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Total +ve TRH (>C10-C40)	µg/L	110
Surrogate o-Terphenyl	%	85

PAHs in Water		
Our Reference		334606-7
Your Reference	UNITS	RB
Depth		-
Date Sampled		04/10/2023
Type of sample		Water
Date extracted	-	06/10/2023
Date analysed	-	09/10/2023
Naphthalene	µg/L	<0.1
Acenaphthylene	µg/L	<0.1
Acenaphthene	µg/L	<0.1
Fluorene	µg/L	<0.1
Phenanthrene	µg/L	<0.1
Anthracene	µg/L	<0.1
Fluoranthene	µg/L	<0.1
Pyrene	µg/L	<0.1
Benzo(a)anthracene	µg/L	<0.1
Chrysene	µg/L	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2
Benzo(a)pyrene	µg/L	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5
Total +ve PAH's	µg/L	<0.1
Surrogate p-Terphenyl-d14	%	96

Organochlorine Pesticides in Water		
Our Reference		334606-7
Your Reference	UNITS	RB
Depth		-
Date Sampled		04/10/2023
Type of sample		Water
Date extracted	-	06/10/2023
Date analysed	-	09/10/2023
alpha-BHC	µg/L	<0.2
НСВ	µg/L	<0.2
beta-BHC	µg/L	<0.2
gamma-BHC	µg/L	<0.2
Heptachlor	µg/L	<0.2
delta-BHC	µg/L	<0.2
Aldrin	µg/L	<0.2
Heptachlor Epoxide	µg/L	<0.2
gamma-Chlordane	µg/L	<0.2
alpha-Chlordane	µg/L	<0.2
Endosulfan I	µg/L	<0.2
pp-DDE	µg/L	<0.2
Dieldrin	µg/L	<0.2
Endrin	µg/L	<0.2
Endosulfan II	µg/L	<0.2
pp-DDD	µg/L	<0.2
Endrin Aldehyde	µg/L	<0.2
pp-DDT	µg/L	<0.2
Endosulfan Sulphate	µg/L	<0.2
Methoxychlor	µg/L	<0.2
Mirex	ug/L	<0.2
Surrogate TCMX	%	93

OP Pesticides in Water		
Our Reference		334606-7
Your Reference	UNITS	RB
Depth		-
Date Sampled		04/10/2023
Type of sample		Water
Date extracted	-	06/10/2023
Date analysed	-	09/10/2023
Dichlorvos	μg/L	<0.2
Mevinphos	µg/L	<0.2
Phorate	µg/L	<0.2
Dimethoate	µg/L	<0.2
Diazinon	μg/L	<0.2
Disulfoton	µg/L	<0.2
Chlorpyriphos-methyl	μg/L	<0.2
Parathion-Methyl	µg/L	<0.2
Ronnel	µg/L	<0.2
Fenitrothion	µg/L	<0.2
Malathion	µg/L	<0.2
Chlorpyriphos	µg/L	<0.2
Fenthion	μg/L	<0.2
Parathion	µg/L	<0.2
Bromophos ethyl	µg/L	<0.2
Methidathion	µg/L	<0.2
Fenamiphos	µg/L	<0.2
Ethion	µg/L	<0.2
Phosalone	µg/L	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.2
Coumaphos	µg/L	<0.2
Surrogate TCMX	%	93

PCBs in Water		
Our Reference		334606-7
Your Reference	UNITS	RB
Depth		-
Date Sampled		04/10/2023
Type of sample		Water
Date extracted	-	06/10/2023
Date analysed	-	09/10/2023
Aroclor 1016	μg/L	<2
Aroclor 1221	μg/L	<2
Aroclor 1232	µg/L	<2
Aroclor 1242	µg/L	<2
Aroclor 1248	µg/L	<2
Aroclor 1254	µg/L	<2
Aroclor 1260	µg/L	<2
Surrogate TCMX	%	93

Metals in Waters - Acid extractable		
Our Reference		334606-7
Your Reference	UNITS	RB
Depth		-
Date Sampled		04/10/2023
Type of sample		Water
Date prepared	-	06/10/2023
Date analysed	-	06/10/2023
Arsenic - Total	mg/L	<0.05
Cadmium - Total	mg/L	<0.01
Chromium - Total	mg/L	<0.01
Copper - Total	mg/L	<0.01
Lead - Total	mg/L	<0.03
Mercury - Total	mg/L	<0.0005
Nickel - Total	mg/L	<0.02
Zinc - Total	mg/L	<0.02

Motheral ID	Matheadalam: Cumman
Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023	
Date analysed	-			09/10/2023	[NT]		[NT]	[NT]	09/10/2023	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	117	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	117	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	118	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	118	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	116	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	116	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	120	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	102	[NT]		[NT]	[NT]	101	

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			06/10/2023	1	06/10/2023	06/10/2023		06/10/2023	
Date analysed	-			10/10/2023	1	09/10/2023	09/10/2023		10/10/2023	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	88	65	30	125	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	240	160	40	121	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	370	320	14	116	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	74	57	26	125	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	420	330	24	121	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	200	190	5	116	
Surrogate o-Terphenyl	%		Org-020	80	1	95	87	9	92	

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334606-2
Date extracted	-			06/10/2023	1	06/10/2023	06/10/2023		06/10/2023	06/10/2023
Date analysed	-			06/10/2023	1	07/10/2023	07/10/2023		06/10/2023	07/10/2023
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	99
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	103
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	95
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	100
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	88	106
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.2	67	105	111
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	81	89
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.06	0.09	40	90	94
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	108	1	103	105	2	97	97

QUALITY CONTROL: Organochlorine Pesticides in soil						Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334606-2	
Date extracted	-			06/10/2023	1	06/10/2023	06/10/2023		06/10/2023	06/10/2023	
Date analysed	-			06/10/2023	1	07/10/2023	07/10/2023		06/10/2023	07/10/2023	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	94	
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	88	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	87	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	81	77	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	92	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	105	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	112	
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	80	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	74	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	120	120	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Mirex	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]	
Surrogate TCMX	%		Org-022/025	101	1	98	100	2	96	96	

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334606-2
Date extracted	-			06/10/2023	1	06/10/2023	06/10/2023		06/10/2023	06/10/2023
Date analysed	-			06/10/2023	1	07/10/2023	07/10/2023		06/10/2023	07/10/2023
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	113	109
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	94
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	72
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	94
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	92
Fenthion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	68
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	84
Phosalone	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	101	1	98	100	2	96	96

QUALIT	Y CONTRO	L: PCBs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	334606-2
Date extracted	-			06/10/2023	1	06/10/2023	06/10/2023		06/10/2023	06/10/2023
Date analysed	-			06/10/2023	1	07/10/2023	07/10/2023		06/10/2023	07/10/2023
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	104	80
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	101	1	98	100	2	96	96

QUALITY CONT	QUALITY CONTROL: Acid Extractable metals in soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			06/10/2023	[NT]	[NT]		[NT]	06/10/2023	
Date analysed	-			06/10/2023	[NT]	[NT]		[NT]	06/10/2023	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]		[NT]	105	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]		[NT]	98	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	103	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	105	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	103	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]		[NT]	91	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	100	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	99	

QUALITY CONTI	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	uplicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023	
Date analysed	-			09/10/2023	[NT]		[NT]	[NT]	09/10/2023	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	103	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	103	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	104	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	107	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102	
Naphthalene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	102	[NT]		[NT]	[NT]	102	
Surrogate Toluene-d8	%		Org-023	101	[NT]		[NT]	[NT]	103	
Surrogate 4-Bromofluorobenzene	%		Org-023	103	[NT]		[NT]	[NT]	96	

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023	
Date analysed	-			07/10/2023	[NT]		[NT]	[NT]	07/10/2023	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	99	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	99	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
Surrogate o-Terphenyl	%		Org-020	87	[NT]		[NT]	[NT]	99	

QUALIT	Y CONTROI	_: PAHs ir	n Water			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023		
Date analysed	-			9/10/2023	[NT]		[NT]	[NT]	9/10/2023		
Naphthalene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	64		
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	64		
Fluorene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	60		
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72		
Anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	74		
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76		
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	62		
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	62		
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	91	[NT]		[NT]	[NT]	97		

QUALITY CONTR	QUALITY CONTROL: Organochlorine Pesticides in Water								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023		
Date analysed	-			9/10/2023	[NT]		[NT]	[NT]	9/10/2023		
alpha-BHC	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	64		
НСВ	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
beta-BHC	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	64		
gamma-BHC	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Heptachlor	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	70		
delta-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Aldrin	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	68		
Heptachlor Epoxide	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	70		
gamma-Chlordane	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
alpha-Chlordane	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
pp-DDE	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	76		
Dieldrin	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	76		
Endrin	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	64		
Endosulfan II	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
pp-DDD	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	74		
Endrin Aldehyde	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
pp-DDT	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	76		
Methoxychlor	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Mirex	ug/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	90	[NT]		[NT]	[NT]	88		

QUALITY (CONTROL: O	P Pesticid	es in Water			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023		
Date analysed	-			9/10/2023	[NT]		[NT]	[NT]	9/10/2023		
Dichlorvos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	74		
Mevinphos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Phorate	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Dimethoate	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Diazinon	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Disulfoton	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Parathion-Methyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Ronnel	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	68		
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	60		
Malathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	72		
Chlorpyriphos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	74		
Fenthion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Parathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	60		
Bromophos ethyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Methidathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Fenamiphos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Ethion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	60		
Phosalone	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Azinphos-methyl (Guthion)	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Coumaphos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	90	[NT]		[NT]	[NT]	88		

QUALITY	Y CONTROL	: PCBs in	Water			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023	
Date analysed	-			9/10/2023	[NT]		[NT]	[NT]	9/10/2023	
Aroclor 1016	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	μg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	110	
Aroclor 1260	μg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	90	[NT]		[NT]	[NT]	88	

QUALITY CONTRO	QUALITY CONTROL: Metals in Waters - Acid extractable								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023		
Date analysed	-			06/10/2023	[NT]		[NT]	[NT]	06/10/2023		
Arsenic - Total	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	112		
Cadmium - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	107		
Chromium - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	107		
Copper - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	106		
Lead - Total	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	106		
Mercury - Total	mg/L	0.0005	Metals-021	<0.0005	[NT]		[NT]	[NT]	102		
Nickel - Total	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	105		
Zinc - Total	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	109		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

TRH_W_NEPM: The positive result in the rinsate sample is due to a single peak with no hydrocarbon profile that is consistent with the use of plastic containers.

Anna Bui

A D
A
Ā
A
A
Ð
nents

6/7 Millennium Court, Silverwater NSW, 2128 Phone: 0490 072 877 E-mail: <u>karin.azzam@ade.group</u> Website: <u>ade.group</u>

In Follow Us

acknowledge the Traditional Owners of the land on which I work and recognise their continuing connection to land, waters and community. I pay my respects to them and their cultures; and to Elders both past and present.

A Please consider the environment before printing this email.

From: Nick Sarlamis <<u>NSarlamis@envirolab.com.au</u>>

Sent: Tuesday, October 10, 2023 7:02 PM

To: Info <<u>info@ade.group</u>>; Karin Azzam <<u>karin.azzam@ade.group</u>>; Stephen Bowly <<u>Stephen.Bowly@ade.group</u>> Subject: Results for Registration 334606 A101023.0436/Melrose Park

- -

_

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 334606-A

Client Details	
Client	ADE CONSULTING GROUP PTY LTD
Attention	Karin Azzam
Address	Unit 6, 7 Millenium Court, Silverwater, NSW, 2128

Sample Details	
Your Reference	A101023.0436/Melrose Park
Number of Samples	Additional silica gel cleanup 1 sample
Date samples received	05/10/2023
Date completed instructions received	13/10/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	20/10/2023						
Date of Issue	18/10/2023						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

Results Approved By Dragana Tomas, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

sTPH in Soil (C10-C40)-Silica		
Our Reference		334606-A-1
Your Reference	UNITS	BH2_0.0-0.1
Depth		0-0.1
Date Sampled		04/10/2023
Type of sample		Soil
Date extracted	-	16/10/2023
Date analysed	-	17/10/2023
TPH C ₁₀ - C ₁₄	mg/kg	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100
TPH C ₂₉ - C ₃₆	mg/kg	<100
TPH >C ₁₀ -C ₁₆	mg/kg	<50
TPH >C ₁₆ -C ₃₄	mg/kg	<100
TPH >C ₃₄ -C ₄₀	mg/kg	<100
Surrogate o-Terphenyl	%	82

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

QUALITY CONT	ROL: sTPH	in Soil (C		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			16/10/2023	[NT]		[NT]	[NT]	16/10/2023	
Date analysed	-			17/10/2023	[NT]		[NT]	[NT]	17/10/2023	
TPH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	121	
TPH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	121	
TPH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	114	
TPH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	121	
TPH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	121	
TPH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	114	
Surrogate o-Terphenyl	%		Org-020	107	[NT]		[NT]	[NT]	115	

Result Definitions							
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

	CHAIN OF CUST			Laboratory Id.F 16 Mars 8400 Enviro	Road Lane					Smallwood	ory Place Murania iroSampleQLD					boratory Leach Highw 1600 Enviro						(6 Monte	erey Roa	aboratory ad Dandenong South V EnviroSampleVic@e	
Company	ADE Consulting Group		Project №	A10	3023.043	6.002				Projec	t Manager	Kar	in Azzan	n				S	ample	r(s)					ta Saxena	
Address	4 / 10-11 Millennium Ct,	Silverwater, NSW 2128	Project Name	Meir	rose Park	DSI					Format EQuiS etc	Esc	iat					Han	ded o	ver by		Carin A	zzam	1		
			g als 8															Emai	il for li	nvoice		accou	unts	@ad	le.group	
Contact Name	Karin Azzam		city "Total" or "Filten of SUITE pricing PCB, Metals												2			Ema	il for R	esults		karin.	azza	am@	ade.group,	Stephen.bowly
Phone №	0490 072 877		P, attra															Cł	14୩୫୦ ୦୦	Con ontainer ly	tainer: /pe & so		ssary		Required Turna Default will be	around Time (TAT) 5 days if not licked
Special Direction	s Standard TAT		Analys equested, pleas must be used (d H, OCP, OI																					idelines)	☐ Overnight (rep ☐ Same day ♦	
Purchase Orde	A103023.0436.002		JITE code XN, PA															astic	astic	astic er Glass	A vial	Bottle	HDPE)	M	□ 2 days♦	□ 3 days♦
Quote ID №			Ana (M) (S) Where merids are requested, p) (M) (S) withere merids are requested, p) SUITE code must be use B10B - TRH, BTEXN, PAH, OCP.															500mL Plastic	250mL Plastic	200mL Amber Glass	40mL VOA vial	500mL PFAS Bottle	Jar (Glass or HDPE)	AS	5 days (Stand Other(ard)
NE	Client Sample ID	Sampled Date/Time od/mm/yy hbmm	Matrix Solid (S) Winter (W)																	2		5	ŗ	Other (Asbestos		Comments ods Hazard Warning
11	BR1	25.09.2023	Soil 🗙												-						100		1			12.0
12					305						-						-									
13												9.4														
14											5.5															
15												4														
16																							-			
	and the staff																									
17																										
18					-	-				-	2.2															
19								Ē													-					
20																										
		Total (Counts 1												1								1)			
Nethod of Shipme			Hand Delivered	Pos		_	ime		Karin	Azzam		Sign	ature	1	G	-A	~		Date		-	<u>4519</u>	ζ.		Time	Ipm
Laboratory Use		pranting		BNE (MEL					ature		~	~		Da		n	814	-	Time		L.	15	sh	-	Temperature	1:1
urofins Environment	Received By Testing Australia Pty Ltd		STU	BNE MEL	and the second second			Sign.	-	deemed as	acceptance o	f Eurofine	Engran	DE		me and Card	thoor we		Time			Infail of the			Report Na	

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521						ABN: 91 05 0159 8
Melbourne	Geelong	Sydney	Canberra	Brisbane	Newcastle	Perth
6 Monterey Road	19/8 Lewalan Street	179 Magowar Road	Unit 1,2 Dacre Street	1/21 Smallwood Place	1/2 Frost Drive	46-48 Banksia Roa
Dandenong South	Grovedale	Girraween	Mitchell	Murarrie	Mayfield West NSW 2304	Welshpool
VIC 3175	VIC 3216	NSW 2145	ACT 2911	QLD 4172	Tel: +61 2 4968 8448	WA 6106
Tel: +61 3 8564 5000	Tel: +61 3 8564 5000	Tel: +61 2 9900 8400	Tel: +61 2 6113 8091	Tel: +61 7 3902 4600	NATA# 1261	Tel: +61 8 6253 44
NATA# 1261	NATA# 1261	NATA# 1261	NATA# 1261	NATA# 1261	Site# 25079 & 25289	NATA# 2377
Site# 1254	Site# 25403	Site# 18217	Site# 25466	Site# 20794		Site# 2370

www.eurofins.com.au

9 898

had 4444

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Penrose, Auckland 1061

IANZ# 1290

EnviroSales@eurofins.com

Tel: +64 9 526 4551

IANZ# 1327

Tauranga 1277 Cameron Road Gate Pa, Christchurch 7675 Tauranga 3112 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1402

Sample Receipt Advice

Company name:	ADE Consulting Group Pty Ltd
Contact name:	Karin Azzam
Project name:	MELROSE PARK DSI
Project ID:	A103023.0436.002
Turnaround time:	5 Day
Date/Time received	Sep 28, 2023 2:35 PM
Eurofins reference	1030306

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt : 5.1 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- 1 Sample containers for volatile analysis received with zero headspace.
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Asim Khan on phone : or by email: AsimKhan@eurofins.com Results will be delivered electronically via email to Karin Azzam - karin.azzam@ade.group. Note: A copy of these results will also be delivered to the general ADE Consulting Group Pty Ltd email address.

Global Leader - Results you can trust

			Eurofins Environment Testing Australia Pty Ltd											Eurofins ARL Pty Ltd		onment Testing I	NZ Ltd
web: www.eurofins.com.au email: EnviroSales@eurofins.com			ABN: 50 005 085 Melbourne 6 Monterey Road Dandenong Sout VIC 3175 Tel: +61 3 8564 5 NATA# 1261 Site# 1254	Geelong I 19/8 Lewalan S h Grovedale VIC 3216	Girraween NSW 2145	bad L N A 8400 T N	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 0 Tel: +61 2 6113 8091 NATA# 1261 Site# 25466		Brisbane t 1/21 Smallwood Plac Murarrie QLD 4172 1 Tel: +61 7 3902 4600 NATA# 1261 Site# 20794		lace 1/2 Frost Mayfield Tel: +61 600 NATA# 1	Mayfield West NSW 2304 Tel: +61 2 4968 8448		ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370		Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 51 Tel: +64 3 343 520 IANZ# 1290	Tauranga 1277 Cameron Road, Gate Pa, Tauranga 3112 11 Tel: +64 9 525 0568 IANZ# 1402
Com Addr	ipany Name: ress:		lting Group Pt ennium Court	y Ltd			R	Order No.: Report #: Phone: Fax:	:	A10302 103030 02 940 02 940	0 7711)2		Receive Due: Priority: Contact	C 5	Sep 28, 2023 2:3 Oct 6, 2023 Day Carin Azzam	35 PM
	ect Name: ect ID:	MELROSE A103023.04												Eurofins	s Analytical Se	rvices Manage	r : Asim Khan
		Sa	ample Detail			Moisture Set	Suite B10B:TRH/BTEXN/PAH/OCP/OPP/PCB/M8										
Sydney Laboratory - NATA # 1261 Site # 18217 External Laboratory						X	X	_									
	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
	BR1	Sep 25, 2023		Soil	S23-Se0067971	х	X										
Test C	Counts					1	1										

Environment Testing

ADE Consulting Group Pty Ltd Unit 6/7 Millennium Court Silverwater NSW 2128

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Karin Azzam

Report Project name Project ID Received Date **1030306-S** MELROSE PARK DSI A103023.0436.002 Sep 28, 2023

Client Sample ID			G01BR1
Sample Matrix			Soil
Eurofins Sample No.			S23-Se0067971
Date Sampled			Sep 25, 2023
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	74
TRH C29-C36	50	mg/kg	210
TRH C10-C36 (Total)	50	mg/kg	284
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	210
TRH >C34-C40	100	mg/kg	270
TRH >C10-C40 (total)*	100	mg/kg	480
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	82
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5

Client Sample ID			G01 BR1
Sample Matrix			Soil
Eurofins Sample No.			S23-Se0067971
Date Sampled			Sep 25, 2023
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons		<u> </u>	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	0.6
Total PAH*	0.5	mg/kg	0.6
2-Fluorobiphenyl (surr.)	1	%	105
p-Terphenyl-d14 (surr.)	1	%	109
Organochlorine Pesticides			
Chlordanes - Total	0.1	mg/kg	< 1
4.4'-DDD	0.05	mg/kg	< 0.5
4.4'-DDE	0.05	mg/kg	< 0.5
4.4'-DDT	0.05	mg/kg	< 0.5
a-HCH	0.05	mg/kg	< 0.5
Aldrin	0.05	mg/kg	< 0.5
b-HCH	0.05	mg/kg	< 0.5
d-HCH	0.05	mg/kg	< 0.5
Dieldrin	0.05	mg/kg	< 0.5
Endosulfan I	0.05	mg/kg	< 0.5
Endosulfan II	0.05	mg/kg	< 0.5
Endosulfan sulphate	0.05	mg/kg	< 0.5
Endrin	0.05	mg/kg	< 0.5
Endrin aldehyde	0.05	mg/kg	< 0.5
Endrin ketone	0.05	mg/kg	< 0.5
g-HCH (Lindane)	0.05	mg/kg	< 0.5
Heptachlor	0.05	mg/kg	< 0.5
Heptachlor epoxide	0.05	mg/kg	< 0.5
Hexachlorobenzene	0.05	mg/kg	< 0.5
Methoxychlor	0.05	mg/kg	< 0.5
Toxaphene	0.5	mg/kg	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1
Dibutylchlorendate (surr.)	1	%	51
Tetrachloro-m-xylene (surr.)	1	%	95
Organophosphorus Pesticides		1	
Azinphos-methyl	0.2	mg/kg	< 0.5
Bolstar	0.2	mg/kg	< 0.5
Chlorfenvinphos	0.2	mg/kg	< 0.5
Chlorpyrifos	0.2	mg/kg	< 0.5
Chlorpyrifos-methyl	0.2	mg/kg	< 0.5
Coumaphos	2	mg/kg	< 5
Demeton-S	0.2	mg/kg	< 0.5
Demeton-O	0.2	mg/kg	< 0.5
Diazinon	0.2	mg/kg	< 0.5
Dichlorvos	0.2	mg/kg	< 0.5

Client Sample ID			G01BR1
Sample Matrix			Soil
Eurofins Sample No.			S23-Se0067971
			Sep 25, 2023
Date Sampled			Sep 25, 2023
Test/Reference	LOR	Unit	
Organophosphorus Pesticides		1	
Dimethoate	0.2	mg/kg	< 0.5
Disulfoton	0.2	mg/kg	< 0.5
EPN	0.2	mg/kg	< 0.5
Ethion	0.2	mg/kg	< 0.5
Ethoprop	0.2	mg/kg	< 0.5
Ethyl parathion	0.2	mg/kg	< 0.5
Fenitrothion	0.2	mg/kg	< 0.5
Fensulfothion	0.2	mg/kg	< 0.5
Fenthion	0.2	mg/kg	< 0.5
Malathion	0.2	mg/kg	< 0.5
Merphos	0.2	mg/kg	< 0.5
Methyl parathion	0.2	mg/kg	< 0.5
Mevinphos	0.2	mg/kg	< 0.5
Monocrotophos	2	mg/kg	< 5
Naled	0.2	mg/kg	< 0.5
Omethoate	2	mg/kg	< 5
Phorate	0.2	mg/kg	< 0.5
Pirimiphos-methyl	0.2	mg/kg	< 0.5
Pyrazophos	0.2	mg/kg	< 0.5
Ronnel	0.2	mg/kg	< 0.5
Terbufos	0.2	mg/kg	< 0.5
Tetrachlorvinphos	0.2	mg/kg	< 0.5
Tokuthion	0.2	mg/kg	< 0.5
Trichloronate	0.2	mg/kg	< 0.5
Triphenylphosphate (surr.)	1	%	73
Polychlorinated Biphenyls			
Aroclor-1016	0.1	mg/kg	< 1
Aroclor-1221	0.1	mg/kg	< 1
Aroclor-1232	0.1	mg/kg	< 1
Aroclor-1242	0.1	mg/kg	< 1
Aroclor-1248	0.1	mg/kg	< 1
Aroclor-1254	0.1	mg/kg	< 1
Aroclor-1260	0.1	mg/kg	< 1
Total PCB*	0.1	mg/kg	< 1
Dibutylchlorendate (surr.)	1	%	51
Tetrachloro-m-xylene (surr.)	1	%	95
Heavy Metals		-	
Arsenic	2	mg/kg	5.7
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	16
Copper	5	mg/kg	24
Lead	5	mg/kg	48
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	7.3
Zinc	5	mg/kg	88
Sample Properties	~		
% Moisture	1	%	16
	1	/0	10

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 04, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 04, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 04, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Oct 04, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 04, 2023	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Oct 04, 2023	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Oct 04, 2023	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	Oct 04, 2023	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Oct 04, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Sep 28, 2023	14 Days
- Method: LTM-GEN-7080 Moisture			

	-	C •	Eurofins Envi ABN: 50 005 085	ironment Testing	Australia Pty Ltd							Eurofins ABN: 91 05	ARL Pty Ltd	Eurofins Envir NZBN: 942904602	onment Testing I	NZ Ltd
web: www	euroi w.eurofins.com.au		Melbourne 6 Monterey Road Dandenong Sout VIC 3175	Geelong 19/8 Lewalan St th Grovedale VIC 3216	Sydney reet 179 Magowar Ro Girraween NSW 2145 5000 Tel: +61 2 9900 : NATA# 1261 Site# 18217	bad U N A 8400 T N	Mitchell ACT 291	eacre Stree 6113 809 261	Murarrie QLD 41	nallwood Plac 9 172 17 3902 460 1261	Newcastle ce 1/2 Frost Drive Mayfield West NSW 230 Tel: +61 2 4968 8448 0 NATA# 1261 Site# 25079 & 25289	Perth 46-48 Bank	sia Road	Auckland 35 O'Rorke Road Penrose, Auckland 1061	uckland Christchurch T 5 O'Rorke Road 43 Detroit Drive 1 enrose, Rolleston, 0 uckland 1061 Christchurch 7675 T b: +64 9 526 4551 Tel: +64 3 343 5201 T 1 1	
	npany Name: ress:		lting Group Pt ennium Court				R	der No. eport #: none: x:		A103023 1030306 02 9400 02 9401	7711		Receive Due: Priority: Contact	: 5	Sep 28, 2023 2:3 Oct 6, 2023 5 Day Karin Azzam	35 PM
	ect Name: ect ID:	MELROSE I A103023.04											Eurofin	s Analytical Se	rvices Manage	r : Asim Khan
		Sa	ample Detail			Moisture Set	Suite B10B:TRH/BTEXN/PAH/OCP/OPP/PCB/M8									
-	ey Laboratory ·	• NATA # 1261	Site # 18217	,		X	X									
No	nal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1 E	BR1	Sep 25, 2023		Soil	S23-Se0067971	Х	Х									
Test C	Counts					1	1									

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	µg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony forming unit		

Terms

APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank					•	
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank				0.0	1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Method Blank	IIIg/Rg	< 0.5		0.0	1 435	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene		< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
	mg/kg			0.5	Pass	
Indeno(1.2.3-cd)pyrene Naphthalene	mg/kg mg/kg	< 0.5 < 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5		
					Pass	
Pyrene Method Blank	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Organochlorine Pesticides Chlordanes - Total	~~~//	.01		0.1	Dean	
	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-HCH	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05	<u> </u>	0.05	Pass	
b-HCH	mg/kg	< 0.05	<u> </u>	0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05	<u> </u>	0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank				_	
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank				1	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1	Acceptance Limits	e Pass Limits	Qualifying Code
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons					
TRH C6-C9	%	80	70-130	Pass	
TRH C10-C14	%	92	70-130	Pass	
TRH C6-C10	%	79	70-130	Pass	
TRH >C10-C16	%	91	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	94	70-130	Pass	
Toluene	%	91	70-130	Pass	
Ethylbenzene	%	89	70-130	Pass	
m&p-Xylenes	%	73	70-130	Pass	
o-Xylene	%	92	70-130	Pass	
Xylenes - Total*	%	79	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	101	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	99	70-130	Pass	
Acenaphthylene	%	106	70-130	Pass	
Anthracene	%	103	70-130	Pass	
Benz(a)anthracene	%	98	70-130	Pass	
Benzo(a)pyrene	%	94	70-130	Pass	
Benzo(b&j)fluoranthene	%	96	70-130	Pass	
Benzo(g.h.i)perylene	%	87	70-130	Pass	
Benzo(k)fluoranthene	%	100	70-130	Pass	
Chrysene	%	98	70-130	Pass	
Dibenz(a.h)anthracene	%	86	70-130	Pass	
Fluoranthene	%	102	70-130	Pass	
Fluorene	%	99	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	88	70-130	Pass	
Naphthalene	%	98	70-130	Pass	
Phenanthrene	%	102	70-130	Pass	
Pyrene	%	104	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	95	70-130	Pass	
4.4'-DDD	%	89	70-130	Pass	
4.4'-DDE	%	100	70-130	Pass	
4.4'-DDT	%	104	70-130	Pass	
a-HCH	%	95	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Aldrin			%	93	70-130	Pass	
b-HCH			%	98	70-130	Pass	
d-HCH			%	97	70-130	Pass	
Dieldrin			%	96	70-130	Pass	
Endosulfan I			%	96	70-130	Pass	
Endosulfan II			%	91	70-130	Pass	
Endosulfan sulphate			%	90	70-130	Pass	
Endrin			%	103	70-130	Pass	
Endrin aldehyde			%	83	70-130	Pass	
Endrin ketone			%	93	70-130	Pass	
g-HCH (Lindane)			%	98	70-130	Pass	
Heptachlor			%	101	70-130	Pass	
Heptachlor epoxide			%	96	70-130	Pass	
Hexachlorobenzene			%	99	70-130	Pass	
Methoxychlor			%	100	70-130	Pass	
LCS - % Recovery							
Organophosphorus Pesticides							
Diazinon			%	98	70-130	Pass	
Dimethoate			%	95	70-130	Pass	
Ethion			%	95	70-130	Pass	
Fenitrothion			%	82	70-130	Pass	
Methyl parathion			%	103	70-130	Pass	
Mevinphos			%	106	70-130	Pass	
LCS - % Recovery				•			
Polychlorinated Biphenyls							
Aroclor-1016			%	94	70-130	Pass	
Aroclor-1260			%	105	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	113	80-120	Pass	
Cadmium			%	108	80-120	Pass	
Chromium			%	108	80-120	Pass	
Copper			%	106	80-120	Pass	
Lead			%	109	80-120	Pass	
Mercury			%	107	80-120	Pass	
Nickel			%	108	80-120	Pass	
Zinc			%	107	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons	; 			Result 1			
TRH C6-C9	S23-Se0068507	NCP	%	71	70-130	Pass	
TRH C10-C14	N23-Oc0001761	NCP	%	76	70-130	Pass	
TRH C6-C10	S23-Se0068507	NCP	%	70	70-130	Pass	
TRH >C10-C16	N23-Oc0001761	NCP	%	73	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S23-Se0068507	NCP	%	85	70-130	Pass	
Talvana	S23-Se0068507	NCP	%	72	70-130	Pass	
Toluene	S23-Se0068507	NCP	%	79	70-130	Pass	
Ethylbenzene	323-360000307					Pass	
	S23-Se0068507	NCP	%	82	70-130	F a 55	
Ethylbenzene m&p-Xylenes		NCP NCP	% %	82	70-130	Pass	
Ethylbenzene	S23-Se0068507						

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Naphthalene	S23-Se0068507	NCP	%	82			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbon	S			Result 1					
Acenaphthene	S23-Oc0006638	NCP	%	86			70-130	Pass	
Acenaphthylene	S23-Oc0006638	NCP	%	91			70-130	Pass	
Anthracene	S23-Oc0006638	NCP	%	79			70-130	Pass	
Benz(a)anthracene	S23-Oc0006638	NCP	%	72			70-130	Pass	
Benzo(k)fluoranthene	S23-Oc0006638	NCP	%	76			70-130	Pass	
Chrysene	S23-Oc0006638	NCP	%	78			70-130	Pass	
Fluorene	S23-Oc0006638	NCP	%	90			70-130	Pass	
Naphthalene	S23-Oc0006638	NCP	%	86			70-130	Pass	
Spike - % Recovery									
Organophosphorus Pesticides				Result 1					
Diazinon	S23-Se0067971	CP	%	89			70-130	Pass	
Dimethoate	S23-Se0067971	CP	%	73			70-130	Pass	
Methyl parathion	S23-Se0067971	CP	%	100			70-130	Pass	
Mevinphos	S23-Se0067971	CP	%	102			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S23-Oc0004327	NCP	%	108			75-125	Pass	
Cadmium	S23-Oc0004327	NCP	%	106			75-125	Pass	
Chromium	S23-Se0069155	NCP	%	89			75-125	Pass	
Copper	S23-Oc0004327	NCP	%	101			75-125	Pass	
Lead	S23-Oc0004327	NCP	%	107			75-125	Pass	
Mercury	S23-Oc0004327	NCP	%	110			75-125	Pass	
Nickel	S23-Oc0004327	NCP	%	98			75-125	Pass	
Zinc	S23-Oc0004327	NCP	%	106			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S23-Se0068506	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	N23-Oc0001758	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	N23-Oc0001758	NCP	mg/kg	86	63	31	30%	Fail	Q15
TRH C29-C36	N23-Oc0001758	NCP	mg/kg	150	100	39	30%	Fail	Q15
TRH C6-C10	S23-Se0068506	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	N23-Oc0001758	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	N23-Oc0001758	NCP	mg/kg	200	140	36	30%	Fail	Q15
TRH >C34-C40	N23-Oc0001758	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S23-Se0068506	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S23-Se0068506	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S23-Se0068506	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S23-Se0068506	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S23-Se0068506	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S23-Se0068506	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate			33						
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S23-Se0068506	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbon	S			Result 1	Result 2	RPD			
Acenaphthene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate								_	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S23-Se0069155	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
4.4'-DDD	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDE	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDT	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
a-HCH	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aldrin	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
b-HCH	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
d-HCH	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dieldrin	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan I	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan II	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan sulphate	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin aldehyde	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin ketone	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
g-HCH (Lindane)	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor epoxide	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Hexachlorobenzene	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methoxychlor	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1	1				
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bolstar	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorfenvinphos	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorpyrifos	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorpyrifos-methyl	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Coumaphos	S23-Se0069155	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Demeton-S	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Demeton-O	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Diazinon	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorvos	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dimethoate	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Disulfoton	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
EPN	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethion	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticide	es			Result 1	Result 2	RPD			
Ethoprop	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethyl parathion	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fenitrothion	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fensulfothion	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fenthion	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Malathion	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Merphos	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methyl parathion	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Mevinphos	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Monocrotophos	S23-Se0069155	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Naled	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Omethoate	S23-Se0069155	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Phorate	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pirimiphos-methyl	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrazophos	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ronnel	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Terbufos	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachlorvinphos	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tokuthion	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloronate	S23-Se0069155	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S23-Oc0006655	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S23-Oc0006655	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S23-Oc0006655	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S23-Oc0006655	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S23-Oc0006655	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S23-Oc0006655	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S23-Oc0006655	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S23-Oc0006655	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S23-Se0067926	NCP	mg/kg	2.5	4.1	46	30%	Fail	Q15
Cadmium	S23-Se0067926	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S23-Se0067926	NCP	mg/kg	9.1	14	41	30%	Fail	Q15
Copper	S23-Se0067926	NCP	mg/kg	40	45	10	30%	Pass	
Lead	S23-Se0067926	NCP	mg/kg	15	14	6.5	30%	Pass	
Mercury	S23-Se0067926	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S23-Se0067926	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S23-Se0067926	NCP	mg/kg	56	49	14	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Asim Khan	Analytical Services Manager
Mickael Ros	Senior Analyst-Metal
Roopesh Rangarajan	Senior Analyst-Organic
Roopesh Rangarajan	Senior Analyst-Volatile

1. Jak

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix G – Data Quality Objectives

The investigation was designed using the data quality objectives (DQO) as defined by the US EPA and the NSW EPA in the "Guidelines for the NSW DEC Site Auditor Scheme" (3rd Edition), (NSW EPA, 2017) and Australian Standard AS 4482.1 2005 (AS, 2005).

The DQO process consists of a seven-step planning approach to facilitate the development of qualitative and quantitative statements that specify the quality of the data required to support decision making within the scope of the investigation. This process utilises systematic planning and statistical hypothesis testing to differentiate between two or more clearly defined alternatives.

Step 1 – State the Problem

A review of available historical information and previous environmental investigations have inferred that the site has a low potential for contamination resulting from past and present land uses. Potential sources of contamination were identified to include potential pollutants from importation of fill across the site, migration of contaminants from offsite sources.

A targeted environmental investigation was therefore undertaken to assess soil conditions within the site. The following data collected was then used to evaluate and characterise the soil condition across the site to inform the need for remediation and further management (if required).

Step 2 – Identify the Decision

The purpose of the investigation is to focus on current and future human health and environmental risks associated with potential contamination. The decisions that need to be made on the contamination status of the site include:

- The extent of contamination (if present) in soil that would preclude the current land use of the site;
- The extent of contamination (if present) in soil at the site that has the potential to:
 - Impact upon a possible future land use of the site
 - Create a human or environmental risk within the site; and
 - Migrate to surrounding receptors.
- If contamination above the adopted criteria is identified, then a further assessment would be undertaken to assess feasible remediation/management options (if required)

The contamination would be considered not to pose a risk if analytical results for the media sampled and analysed are less than the adopted SAC presented in Site Investigation Criteria or are determined by a site-specific risk assessment not to represent an unacceptable risk to human health and/or the environment. Where an unacceptable risk is indicated, remediation and/or management options will need to be considered to address the risk and meet the site objectives.

Step 3- Identify Inputs to the Decision

To address the decision questions outlined in Step 2 of the DQOs, the following inputs to the decision have been identified:

- A review of previous environmental investigations undertaken at the site;
- A review of the historical and current use of the site;
- Investigation of soil vapour
- Investigation of the existing soil conditions at the site; and
- Comparison of soil analytical results with the site assessment criteria as outlined in the Site Investigation Design and Procedure

The CoPCs selected were determined through on-site observations following the completion a comprehensive desktop study and soil sampling and analysis.

Step 4 – Define the Boundaries of the Study

This step provides a detailed description of the spatial and temporal boundaries of the study area. These characteristics define the population of interest and any practical considerations for the study area (refer to **Table 16).**

Table 16 Summary of the Study Boundaries.

Spatial Boundaries	The works performed for this report cover the proposed development area, or construction footprint.The vertical boundaries of the proposed investigations are limited to a maximum depth 2.0 m BGL in soil. No assessment of groundwater was
Temporal Boundaries	undertaken. The investigation works were undertaken on the during September- October
Investigation Limit	2023. The limit of the investigation has been undertaken to provide indicative/ detailed information as to the level and type of contamination within the site.
Constraints	Time, cost, redesign, remediation, and inaccessible areas across the site were considered constraints to the investigation.
Receptors of Concern	The potential receptors of concern are outlined in Section 9

Step 5 – Develop a Decision Rule

The purpose of this step is to define the parameters of interest, specify the action level and combine the outputs of the previous DQO steps into an "if...then..." decision rule that defines the conditions that would cause the decision-maker to choose alternative actions. The types of data quality required during the fieldwork, the laboratory components of the investigation and the acceptable limits for this data as provided in **Section 8.8.** A summary of the decision rules is included in **Table 17**.

Table 17 Summary of the Decision Rules.

Table 17 Summary of the Decision Rules.						
	Based on the data quality types and limits the following decision rules applied:					
	• If the relative percent difference (RPD) values for blind replicates or split					
	samples are outside the acceptable limits, then there may have been					
	errors in a laboratory analysis process. When assessing duplicate pairs					
	with elevated RPD values, the project Environmental Scientist will check					
	the laboratory results and examine the nature of the sample being					
	evaluated since heterogeneous samples can often provide high RPD					
	values. If it is believed that irreversible errors had occurred during the					
Decision Rules	laboratory process, then an additional investigation may be deemed to be					
	required to resolve the decision question;					
	• Should greater than 5% of the laboratory QA / QC data fail to meet the					
	acceptable limits outlined in this report, the laboratory may be requested					
	to re-analyse samples or justify the analytical results;					
	• For the analysis of investigation samples, if the absolute value of the					
	measured concentration of a parameter or compound is above the					
	nominated SAC; and were deemed suitable for 95% UCL analysis, then the					
	subject material can be considered suitable to remain onsite; and					

 95% UCL data will only be considered where the standard deviation of the data set is less than 50% of the SAC, and the maximum concentration is less than 250% of the SAC. Samples exceeding these criteria will be excluded from the dataset and treated as a hotspot.

Step 6 – Specify Acceptable Limits on Decision Errors

This step is to establish the specific limits on decision errors, which were used to determine the targets for limiting uncertainty in the data. Data generated during the environmental investigation needs to be appropriate to allow decisions to be made with confidence. The specific limits for this investigation were based on appropriate guidance from the NSW EPA, NEPC (2013), AS 2005 and appropriate indicators of DQIs used to assess QA / QC for field sampling and handling.

To assess the suitability of the analytical data obtained prior to making decisions, the data was assessed against pre-determined Data Quality Indicators (DQIs) to assess precision, accuracy, representativeness, comparability, and completeness (PARCC parameters), as outlined in AS 2005. The acceptable limit on decision error was 95% compliance with the DQIs. The pre-determined DQIs specified for the investigation works are discussed below in relation to the PARCC parameters as summarised in **Table 18**.

Precision	 Sampling and analysis of field blind duplicates and split replicates to be undertaken at a minimum rate of 1 pair per every 20 samples. Laboratory duplicate analysis to be undertaken by the testing laboratory at a minimum rate of 1 per 20 samples. Field and laboratory RPD values to be less than 30% for analytical results greater than (>) 30 times the laboratory LOR, less than (<) 50 % for analytical results between 10 and 30 times the laboratory LOR and a control limit of ± the LOR if either the sample or duplicate value is less than 10 times the laboratory LOR.
Accuracy	 Laboratory surrogate spike recoveries were to be within 70 – 130% for all organic analyses (if applicable). Laboratory control sample (LCS) recoveries to be assessed at a rate of one (1) sample per laboratory batch. LCS recoveries were to be within 70 – 130% (if applicable). Matrix spike (MS) recoveries are to be assessed at a rate of one sample per laboratory batch. LCS recoveries were to be within 70 – 130% (if applicable).
Representativeness	 Appropriate sampling methods undertaken for all samples. All samples were extracted and analysed within holding times. One laboratory blank was collected per laboratory batch. All laboratory blank analytical results were below the laboratory LOR. One trip spike is to be submitted with each sampling batch. Trip spike recoveries are to be within 70 – 130% (if applicable). One trip blank is to be submitted with each sampling batch. Trip spike recoveries are to be within 70 – 130% (if applicable).
Comparability	 Sampling was completed in accordance with the recommended methods outlined within Section 5, Systematic planning for the collection of environmental data, in Schedule B2 of NEPM (2013), AS 2005 and ADE Standard Operating Procedures (SOPs) which are in line with industry standards.

Table 18 Summary of Acceptable Limits on Decision Errors.

	 Standard analytical methodologies were used by laboratories that were NATA accredited for the requested analyses. Laboratory LORs were appropriate and consistent for the objectives of the validation assessment.
Completeness	• Field documentation complete and appropriate for all samples to meet the objectives of the validation assessment.
	• Sample description and CoC documentation complete and appropriate for all samples to meet the objectives of the validation assessment.
	• The sampling frequency and findings of the QA/QC sample review valid for >95% of samples.

Step 7 – Optimise the Design for Obtaining Data

The organisation of the data collection and analysis design for optimising the generation of data to satisfy the DQOs and the objective of the investigation has been achieved via the following procedures outlined in **Table 19**.

Table 19 Summary of Procedures to be Undertaken to Optimize the Design for Obtaining Data.

Pre-approved Work Plan	The sampling plan for the investigation at the site has been developed to assess the concentrations of contaminants present in soils at the site through the implementation of the components outlined within NEPM (2013), AS 4482.1
	(2005) and AS/NZS 5667.1 (1998).
Compliance with EPA	 Use of appropriate techniques for the sampling, storage, and
Guidelines	transportation of samples.
	 Implementation of NATA certified laboratory using analytical procedures as outlined in NEPM (2013).
	• Use of a secondary laboratory for split samples which is NATA certified for
	the required analyses.

Appendix H - Data Quality Assessment

A summary of the Quality Assurance / Quality Control (QA/QC) results for the soil analysis is shown below in **Table 20**. Refer to Appendix I - QA/QC Tables for further information and data analysis.

Table 20 Summary of Soll Sample	
Quality Assurance / Quality	To check the accuracy and validity of soil sampling results, a range of
Control	quality assurance and quality control measures were implemented.
Sample collection & handling	Yes
measures appropriate?	
Field QA/QC Samples	BR1 is a duplicate of primary sample TP6_0.2-0.3
	RPD exceedances (>30% in select heavy metals such as copper, select TRHs
	and TPHs) are attributed to difficulties in obtaining homogenous samples
	from heterogeneous matrices. The exceedances are not considered to
	have an adverse impact on the overall quality of the dataset for
	environmental interpretive use (Refer to Appendix I – QAQC Table).
Inter-Laboratory QA/QC	SR is a duplicate of primary sample TP6_0.2-0.3.
Samples	
	RPD exceedances (>30% in select TRHs and PAHs) are attributed to
	difficulties in obtaining homogenous samples from heterogeneous
	matrices. The exceedances are not considered to have an adverse impact
	on the overall quality of the dataset for environmental interpretive use (Refer to Appendix I – QAQC Table).
	(Refer to Appendix I – QAQC Tuble).
Laboratory QA/QC results	Yes.
acceptable?	ADE considers that the internal QA/QC undertaken by the laboratories is
	satisfactory (refer to Appendix E – Results Tables for the laboratory quality
	control report).
Rinsate	No equipment rinsate collected.
Trip Blank, Trip Spike	No Trip Blank and Trip Spike used.
Field & Laboratory Data	ADE considers that the analytical results are representative of the
Usable?	conditions of the sampling locations at the time of sampling and are
	directly usable for the purpose of this assessment.

Table 20 Summary of Soil Sample QA/QC Analysis.

Equipment Decontamination

Dedicated disposable materials (such as nitrile gloves) were changed between each sampling point. All disposable sampling equipment/materials were collected and removed before leaving the site. All nondisposable sampling equipment were decontaminated by a three-stage decontamination process which included rinsing the piece of equipment with deionised water, followed by a rinse of a detergent (Liquinox) and a final rinse using deionised water.

To carry out the data quality assessment for the lab analytical results acquired in the course of this investigation, the US EPA Guidelines were used. The Guidelines provide a general strategy for assessing data quality criteria and performance specifications as part of decision making. The following assessment methodology addresses most of the steps of the data quality assessment (DQA) process provided in the guidelines.

Data Review

Quality control reports from the laboratories subcontracted for sample analyses were reviewed. Laboratory blank samples, duplicate samples, control samples, spiked samples and method blanks were evaluated.

This review was conducted as per the items recommended by the NSW EPA for inclusion in the consultants' reports. Some additional recommendations from the US EPA methodology, as referred to by AS 4482.1, were also followed.

Following the QA/QC assessment, the validity of the results is determined based on the assessment criteria adopted with the results expressed as either valid or invalid data (acceptable or unacceptable). An overall summary of the QA/QC assessment can be found in *Appendix I* – QA/QC Output.

CoC

Australian Standard AS 4482.1 defines the chain-of-custody documentation as the link in the transfer of samples between the time of collection and arrival at the laboratory.

The CoC utilised by ADE included the items recommended by the Standard:

- The person transferred the samples;
- The person who received the samples;
- Date the samples were collected;
- Date the samples were received at the laboratory; and
- Contact name and details for the client.

Copies of the CoCs completed during this investigation are provided in in *Appendix F – Analytical Reports and Chain of Custody*

Field Equipment Calibration

Field equipment requiring calibration included the use of a photo-ionisation detector (PID) and GFM. The PID and GFM was calibrated by an external qualified technician before the sampling events and further calibrated onsite i.e., bump tested (as required) by a suitably qualified environmental consultant (refer to *Appendix D* for the attached calibration certificate).

Laboratory Analytical Methodology and Accreditation

All chemical analysis was undertaken by NATA accredited laboratories using US EPA approved methodology. Refer to *Appendix F* – *Analytical Reports and Chain of Custody Documentation* for the details of the adopted laboratory analytical methods and their respective accreditations. The laboratory methodologies and the respective accreditations of Eurofins and Envirolab were deemed suitable for the required analyses.

Detection Limits / Practical Quantification Limits

The smallest amount of a substance that can be detected by the laboratories used – Eurofins and Envirolab, above the background method noise in a procedure and within a stated confidence level is referred as detection limit.

Current practice identifies several detection limits including the following: (1) the instrument detection limit (IDL), (2) the lower-level detection limit (LLD), the method detection limit (MDL) and the practical quantitation limit (LOR).

The relationship among these levels is approximately IDL: LLD: MDL: LOR = 1: 2: 4: 10. Refer to Envirolab and Eurofins for the list of LORs provided by their respective laboratories. When dilution of a sample is involved in the sample preparation, the method detection limit is adjusted by the dilution factor.

Record of Holding Times

The objective is to ascertain the validity of the analytical results based on meeting the holding times for the samples from the time of collection to the time of analysis.

All primary and QAQC samples collected over the course of the investigation were submitted within the recommended holding times of the required analysis. As such, the holding times of the samples to the final submission to the laboratories used (SLS and Envirolab) meet the recommended holding time criteria, with all samples analysed within 7 days (or specific to an analyte) from the time of collection.

Analytical Methods Used

Analysis was undertaken by NATA accredited laboratories using US EPA approved methodologies. Refer to *Appendix F – Chain of Custody Documentation* and Laboratory Analytical Reports for the analytical methods used by the laboratories, which in all cases were deemed appropriate for the required analyses.

Laboratory QA/QC

Laboratory Duplicates

Duplicate sample determinations were provided by the laboratories to demonstrate acceptable method precision at the time of analysis. Duplicates are, generally, analysed at a frequency of 1 for every 10 samples. Australia Standard AS 4482.1 provides an acceptable range of the RPD values up to 50% for quality control samples.

Analysis of laboratory duplicates did not identify any invalid values.

Laboratory Blanks

The assessment of blank analysis results was to determine the existence and magnitude of contamination resulting from laboratory activities.

The assessment of blank analysis results was carried out to determine the existence and magnitude of contamination resulting from laboratory activities. No contaminants were found in the blanks analysed by the laboratory.

Analysis of laboratory blanks showed 1215 valid values and 61 invalid values.

Laboratory Spikes and Surrogates

The laboratory limit of 70-130% for inorganics / metals, and 60-140% for organics was used to validate matrix spikes and laboratory control samples. The laboratory limit of 50-150% was implemented to validate surrogate recoveries for organic analytes. These criteria, generally, conform to the USEPA recommended standards.

Analysis of spikes and surrogates showed 1918 valid values and 15 invalid values.

The acceptable limits on decision errors to be applied in the investigation and the manner of addressing possible decision errors have been applied. The data is considered fit for its intended use in operations, decision making and planning as per step 6 of the Data quality objectives and assessment.

Appendix I – QAQC Table

		Lab Report Number Field ID Date Matrix Type	334223 TP1_0.1-0.2_230925 25 Sep 2023 Soil	333985 SR1 25 Sep 2023 Soil	RPD	334223 TP1_0.1-0.2_230925 25 Sep 2023 Soil	1030306 BR1 25 Sep 2023 Soil	RPD
Metals Arsenic	Unit mg/kg	EQL 2	6	6	0	6	5.7	5
Cadmium Chromium (III+VI) Copper	mg/kg mg/kg mg/kg	0.4	<0.4 16 35	<0.4 17 28	0 6 22	<0.4 16 35	<0.4 16 24	0 0 37
Lead Mercury Nickel	mg/kg mg/kg mg/kg	1 0.1 1	53 <0.1 9	55 <0.1 11	4 0 20	53 <0.1 9	48 <0.1 7.3	10 0 21
Zinc BTEX Benzene	mg/kg mg/kg	0.1	94 <0.2	<0.2	20 22 0	94 <0.2	<0.1	7
Toluene Ethylbenzene Xylene (m & p)	mg/kg mg/kg mg/kg	0.1 0.1 0.2	<0.5 <1 <2	<0.1 <0.5 <1 <2	0	40.5 <1 <2	<0.1 <0.1 <0.1 <0.2	0
Xylene (o) Xylene Total	mg/kg mg/kg	0.2 0.1 0.3 0.5	<2 <1 <1 <1	ব ব ব	0	<2 <1 <1 <1	<0.2 <0.1 <0.3 <0.5	0
Naphthalene (VOC) PAH Acenaphthene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Acenaphthylene Anthracene Benzo(b+j+k)fluoranthene	mg/kg mg/kg mg/kg	0.1 0.1 0.2	<0.1 <0.1 0.9	<0.1 <0.1 0.5	0 0 57	<0.1 <0.1 0.9	<0.5 <0.5	0
Benz(a)anthracene Benzo(a) pyrene Benzo(b+i)fluoranthene	mg/kg mg/kg mg/kg	0.1 0.05 0.5	0.3	0.3	0 50	0.3	<0.5 <0.5 <0.5	0
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	mg/kg mg/kg mg/kg	0.1 0.5 0.1	0.3	0.2	40	0.3	<0.5 <0.5 <0.5	0
Dibenz(a,h)anthracene Fluoranthene Fluorene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 0.7 <0.1	<0.1 0.6 <0.1	0 15 0	<0.1 0.7 <0.1	<0.5 <0.5 <0.5	0 33 0
Indeno(1,2,3-c,d)pyrene Naphthalene	mg/kg mg/kg	0.1	0.5 <0.1	0.1 <0.1	133 0	0.5 <0.1	<0.5 <0.5	0
Phenanthrene Pyrene PAHs (Sum of total)	mg/kg mg/kg mg/kg	0.1 0.1 0.5	0.3	0.3	0	0.3	<0.5 0.6 0.6	0
PAHs (Sum of positives) PCBs Arochlor 1016	mg/kg mg/kg	0.05	4.3	3.2 <0.1	29 0	4.3	<1	0
Arochlor 1221 Arochlor 1232 Arochlor 1242	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	0	<0.1 <0.1 <0.1	ব ব ব	0
Arochlor 1248 Arochlor 1254 Arochlor 1260	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	0	<0.1 <0.1 <0.1	य य य	0
PCBs (Sum of total) Perfluoroalkane Sulfonic Acids Perfluorohexane sulfonic acid	mg/kg	0.1	<0.1	<0.1	0	<0.1	4	0
(PFHxS)	mg/kg	0.0001	0.0002			0.0002		
Perfluorooctane sulfonic acid (PFOS) Perfluoroalkane Carboxylic Acids Perfluorooctanoic acid (PFOA)	mg/kg mg/kg	0.0001	0.0055			0.0055		
PFAS Sum of PFHxS and PFOS Sum of PFAS	mg/kg mg/kg	0.0001 0.0001	0.0058 0.0060			0.0058 0.0060		
Sum of PFAS (PFOS + PFOA) Physical Moisture Content	mg/kg %	0.0001	0.0058	14	0	0.0058		
Moisture Content (dried @ 103°C)	%	1	A**	P.4	5	14	16	
TRH <u>C6-C10 Fraction (F1)</u> <u>C6-C10 (F1 minus BTEX)</u>	mg/kg mg/kg	20 20	<25 <25	<25 <25	0	<25 <25	<20 <20	0
>C10-C16 Fraction (F2) >C10-C16 Fraction (F2 minus Naphthalene)	mg/kg mg/kg	50	<50 <50	<50 <50	0	<50 <50	<50	0
>C16-C34 Fraction (F3) >C34-C40 Fraction (F4) >C10-C40 Fraction (Sum)	mg/kg mg/kg mg/kg	100 100 50	<100 <100 <50	100 130 230	0 26 129	<100 <100 <50	210 270 480	71 92 162
TPH C6-C9 Fraction C10-C14 Fraction	mg/kg	20	<25	<25 <50	0	<25	<20 <20	0
C15-C28 Fraction C29-C36 Fraction	mg/kg mg/kg mg/kg	50 50	<100 <100	<100 120	0 18	<100 <100	74 210	0 71 140
C10-C36 Fraction (Sum) MAH 1,2,4-trimethylbenzene	mg/kg mg/kg	50 1	<50	120	82	<50	284	140
1,3,5-trimethylbenzene Isopropylbenzene n-butylbenzene	mg/kg mg/kg mg/kg	1 1 1	<1 <1 <1			ব ব ব		
n-propylbenzene p-isopropyltoluene sec-butylbenzene	mg/kg mg/kg mg/kg	1 1 1 1	<1 <1 <1			्त त त		
Styrene tert-butylbenzene	mg/kg mg/kg mg/kg	1 1 1	<1 <1 <1			ব ব ব		
Organochlorine Pesticides Organochlorine pesticides EPAVic Othes estates there a pesticides	mg/kg	0.1					Þ	
Other organochlorine pesticides EPAVic 4,4-DDE	mg/kg	0.1	<0.1	<0.1	0	<0.1	<1 <0.5	0
a-BHC Aldrin Aldrin + Dieldrin	mg/kg mg/kg mg/kg	0.05 0.05 0.05	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.5 <0.5 <0.5	0
b-BHC Chlordane Chlordane (cis)	mg/kg mg/kg mg/kg	0.05 0.1 0.1	<0.1	<0.1	0	<0.1 <0.1	<0.5	0
Chlordane (trans) d-BHC DDD	mg/kg mg/kg	0.1 0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	0	<0.1 <0.1 <0.1 <0.1	<0.5 <0.5	0
DDT DDT+DDE+DDD	mg/kg mg/kg mg/kg	0.05 0.05 0.05	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.5 <0.5	0
Dieldrin Endosulfan I Endosulfan II	mg/kg mg/kg mg/kg	0.05 0.05 0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	0 0 0	<0.1 <0.1 <0.1	<0.5 <0.5 <0.5	0 0 0
Endosulfan sulphate Endrin Endrin aldehyde	mg/kg mg/kg mg/kg	0.05 0.05 0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	0 0	<0.1 <0.1 <0.1	<0.5 <0.5 <0.5	0 0 0
Endrin ketone Fenamiphos g-BHC (Lindane)	mg/kg mg/kg mg/kg	0.05 0.1 0.05	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	0	<0.1 <0.1 <0.1	<0.5	0
Heptachlor Heptachlor epoxide	mg/kg mg/kg	0.05	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.5 <0.5	0
Methoxychlor Mirex Toxaphene	mg/kg mg/kg mg/kg	0.05 0.1 0.5	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.5 <10	0
Organophosphorous Pesticides Tokuthion Azinophos methyl	mg/kg mg/kg	0.2	<0.1	<0.1	0	<0.1	<0.5 <0.5	0
Bolstar (Sulprofos) Bromophos-ethyl Chlorfenvinphos	mg/kg mg/kg mg/kg	0.2 0.1 0.2	<0.1	<0.1	0	<0.1	<0.5	
Chlorpyrifos Chlorpyrifos-methyl Coumaphos	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	0 0 0	<0.1 <0.1 <0.1	<0.5 <0.5 <0.5	0 0 0
Demeton-O Demeton-S	mg/kg mg/kg	0.2					<0.5 <0.5	
Diazinon Dichlorvos Dimethoate	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	0	<0.1 <0.1 <0.1	<0.5 <0.5 <0.5	0
Disulfoton Ethion Ethoprop	mg/kg mg/kg mg/kg	0.1 0.1 0.2	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.5 <0.5 <0.5	0
Fenitrothion Fensulfothion Fenthion	mg/kg mg/kg mg/kg	0.1 0.2 0.1	<0.1	<0.1	0	<0.1	<0.5 <0.5 <0.5	0
EPN Malathion Merphos	mg/kg mg/kg mg/kg	0.2 0.1 0.2	<0.1	<0.1	0	<0.1	<0.5 <0.5 <0.5	0
Methidathion Methyl parathion Mevinphos (Phosdrin)	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	0 0 0	<0.1 <0.1 <0.1	<0.5	0
Monocrotophos Naled (Dibrom) Omethoate	mg/kg mg/kg mg/kg	0.1 2 0.2 2					<0.5 <s <0.5 <s< td=""><td></td></s<></s 	
Parathion Phorate	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.5 <0.5	0
Pirimiphos-methyl Pyrazophos Ronnel Tech. for	mg/kg mg/kg mg/kg	0.2 0.2 0.1	<0.1	<0.1	0	<0.1	<0.5 <0.5 <0.5	0
Terbufos Trichloronate Tetrachlorvinphos	mg/kg mg/kg mg/kg	0.2 0.2 0.2					<0.5 <0.5 <0.5	
Halogenated Benzenes 1,2,3-trichlorobenzene 1,2,4-trichlorobenzene	mg/kg mg/kg	1 1	<1 <1			<1 <1		
1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene	mg/kg mg/kg mg/kg	1 1 1	<1 <1 <1			ব ব ব ব		
2-chlorotoluene 4-chlorotoluene Bromobenzene	mg/kg mg/kg	1 1 1 1 1	<1 <1 <1 <1			ব ব ব ব		
Chlorobenzene Hexachlorobenzene	mg/kg mg/kg mg/kg	1 1 0.05	<1 <1 <0.1	<0.1	0	<1 <1 <0.1	<0.5	0
Chlorinated Hydrocarbons 1,1,1,2-tetrachloroethane 1,1,1-trichloroethane	mg/kg mg/kg	1 1	<1 <1			বা বা		
1,1,2,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane	mg/kg mg/kg mg/kg	1 1 1	<1 <1 <1			ব ব ব		
1,1-dichloroethene 1,1-dichloropropene 1,2,3-trichloropropane	mg/kg mg/kg mg/kg	1 1 1 1	<1 <1 <1			ব ব ব		
1,2-3-tricnoropropane 1,2-dibromo-3-chloropropane 1,2-dichloroptopane	mg/kg mg/kg	1 1 1 1	<1 <1 <1 <1			বা বা বা বা		
1,3-dichloropropane 2,2-dichloropropane	mg/kg mg/kg mg/kg	1	<1 <1			<1 <1		
Bromochloromethane Bromodichloromethane Bromoform	mg/kg mg/kg mg/kg	1 1 1 1	<1 <1 <1			ব ব ব		
Carbon tetrachloride Chlorodibromomethane Chloroethane	mg/kg mg/kg mg/kg	1 1 1	<1 <1 <1			ব ব ব		
Chloroform Chloromethane cis-1,2-dichloroethene	mg/kg mg/kg mg/kg	1 1 1 1	<1 <1 <1			्त दा दा		
cis-1,3-dichloropropene Dibromomethane	mg/kg mg/kg	1	<1 <1			<1 <1		
Hexachlorobutadiene Trichloroethene Tetrachloroethene	mg/kg mg/kg mg/kg	1 1 1	<1 <1 <1			ব ব ব		
trans-1,2-dichloroethene trans-1,3-dichloropropene Vinyl chloride	mg/kg mg/kg mg/kg	1 1 1	<1 <1 <1			বা বা বা		
(n:2) Fluorotelomer Sulfonic Acids 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	mg/kg	0.0001	<0.0001			<0.0001		
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	mg/kg	0.0001	<0.0001			<0.0001		
Phenols Phenolics Total Solvents	mg/kg	5	<5			<5		
Cyclohexane Halogenated Hydrocarbons 1,2-dibromoethane	mg/kg	1	<1 <1			ব		
Bromomethane Dichlorodifluoromethane Trichlorofluoromethane	mg/kg mg/kg mg/kg	1 1 1	<1 <1 <1			<1 <1 <1		
Inorganics Cyanide Total Other	mg/kg	0.5	<0.5			<0.5		
Phosalone	mg/kg	0.1	<0.1	<0.1	0	<0.1		

***PDs have only been considered where a concentration is greater than 1 times the EQL.
**Elevated RPDs are highlighted as per QACC Profile settings (Acceptable RPDs for each EQL multiplier range are: 100 (1 - 10 x EQL; 50 (10 - 20 x EQL); 30 (> 20 x EQL))
****Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Further details regarding ADE's services are available via

Info@ade.group
 www.ade.group

ADE Consulting Group Pty Ltd

Syaney

Unit 6/7 Millenium Court, Silverwater, NSW 2128 Australia 1300 796 922

ADE Consulting Group (QLD) Pty Ltd

Brisbane 10/53 Metroplex Avenue, Murarrie QLD 4172, Australia. 1300 796 922 Newcastle Unit 9/103 Glenwood Drive Thornton, NSW 2322, Australia 1300 796 922

ADE Consulting Group (VIC) Pty Ltd Melbourne Unit 4/95 Salmon Street Port Melbourne, VIC 3207, Australia 1300 796 922